• Title/Summary/Keyword: potato plant

Search Result 906, Processing Time 0.026 seconds

Rapid Identification of Potato Scab Causing Streptomyces spp. from Soil Using Pathogenicity Specific Primers

  • Kim, Jeom-Soon;Lee, Young-Gyu;Ryu, Kyoung-Yul;Kim, Jong-Tae;Cheon, Jeong-Uk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.134.2-135
    • /
    • 2003
  • The plant-pathogenic species S. scabies, S. acidiscabies, and S. turgidiscabies cause the scab disease of potato and produce the phytotoxins, thaxtomins. necl, a gene conferring a necrogenic phenotype, is involved in pathogenicity and physically linked to the thaxtomin A biosynthetic genes. Identification of the pathogenic strains of Streptomyces from soil was performed through the polymerase chain reaction by using specific pathogenicity primer sets derived from the necl gene sequences of Streptomyces smbies. The DNA was extracted from soil using a bead-beating machine and modifications of the FastPrep system. The DNA was suitable for direct use in the PCR. The PCR products showed the bands of approximately 460 bp. This methods can be very usuful in identifying species responsible for scab diseases and studying on the ecology of plant-pathogenic Streptomyces spp.

  • PDF

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Transcriptome Profiling and Characterization of Drought-Tolerant Potato Plant (Solanum tuberosum L.)

  • Moon, Ki-Beom;Ahn, Dong-Joo;Park, Ji-Sun;Jung, Won Yong;Cho, Hye Sun;Kim, Hye-Ran;Jeon, Jae-Heung;Park, Youn-il;Kim, Hyun-Soon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.979-992
    • /
    • 2018
  • Potato (Solanum tuberosum L.) is the third most important food crop, and breeding drought-tolerant varieties is vital research goal. However, detailed molecular mechanisms in response to drought stress in potatoes are not well known. In this study, we developed EMS-mutagenized potatoes that showed significant tolerance to drought stress compared to the wild-type (WT) 'Desiree' cultivar. In addition, changes to transcripts as a result of drought stress in WT and drought-tolerant (DR) plants were investigated by de novo assembly using the Illumina platform. One-week-old WT and DR plants were treated with -1.8 Mpa polyethylene glycol-8000, and total RNA was prepared from plants harvested at 0, 6, 12, 24, and 48 h for subsequent RNA sequencing. In total, 61,100 transcripts and 5,118 differentially expressed genes (DEGs) displaying up- or down-regulation were identified in pairwise comparisons of WT and DR plants following drought conditions. Transcriptome profiling showed the number of DEGs with up-regulation and down-regulation at 909, 977, 1181, 1225 and 826 between WT and DR plants at 0, 6, 12, 24, and 48 h, respectively. Results of KEGG enrichment showed that the drought tolerance mechanism of the DR plant can mainly be explained by two aspects, the 'photosynthetic-antenna protein' and 'protein processing of the endoplasmic reticulum'. We also divided eight expression patterns in four pairwise comparisons of DR plants (DR0 vs DR6, DR12, DR24, DR48) under PEG treatment. Our comprehensive transcriptome data will further enhance our understanding of the mechanisms regulating drought tolerance in tetraploid potato cultivars.

Development of Detection Method of Unapproved Genetically Modified Potato (EH92-527-1) in Korea using Duplex Polymerase Chain Reaction (Duplex PCR을 이용한 국내 미승인 유전자변형 감자(EH92-527-1)의 검사법 개발)

  • Yoo, Myung-Ryul;Kim, Jae-Hwan;Yea, Mi-Chi;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.156-160
    • /
    • 2013
  • A duplex polymerase chain reaction (PCR) method was developed to detect unapproved genetically modified (GM) potato (EH92-527-1) in Korea. The UDP-glucose pyrophosphorylase (UGP) gene was selected as an endogenous reference gene for potato and used to validate the specificity for 14 different crops. The primer pair EH92-F/R was designed to amplify the junction sequence between the genome and transgenic region introduced in GM potato. Its specificity was also validated using several different GM events. The detection limit of the duplex PCR method is approximately 0.05%. This duplex PCR method could be useful for monitoring cultivation of unauthorized GM potato in Korea.

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

Morphology, Pathogenicity and Molecular analysis of Alternaria Isolates from Solanaceous Crops (oral)

  • Cho, H.S.;Park, M.S.;Kim, B.R.;Yu, S.H.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.112.3-113
    • /
    • 2003
  • More than 30 isolates of Alternaria were obtained from various solanaceous crops in Korea. For all isolates, morphological characteristics of the conidia were determined and compared with those of representative isolates of A. solani and A. tomatophila. Pathogenicity test was performed to Potato, tomato, egg plant and red Pepper and molecular characteristics of them including the representative isolates were determined using sequence analyses of ITS rDNA and histone H3 gene, and URP-PCR analysis. Based on morphological characteristics, the isolates from the solanaceous crops were grouped as identical or very similar to either A. tomatophila(ATO), A. solani(ASO), and unidentified Altemaria sp.(ASP). Among the molecular markers used in this study, the URP-PCR analysis was found to be appropriate for taxonomic resolution of these species. Based on the conidial morphology, pathogenicity test and molecular characteristics, A. tomatophila(early blight of tomato) could be distinguished from A. solani(early blight of potato), and the Alternaria sp.(ASP) from potato, which was closely related to A. solani in conidial morphology, was considered as a new species.

  • PDF

Studies on Purification and Serology of Potato Virus X (감자바이러스 X의 순화와 혈청학적 연구)

  • Lee Soon Hyung;Lee Key Woon;Chung Bong Jo
    • Korean journal of applied entomology
    • /
    • v.16 no.2 s.31
    • /
    • pp.101-104
    • /
    • 1977
  • Potato virus X was purified especially for the preparation of antisera for diagnosis and identification. Potato virus X was isolated Iron infected plants by means of indicator plants and identified in electron microscopy. Isolated PVX was multiplied in tomato plants and purified by a modified procedures. The purity of PVX was 0.59mg/m1. Purified PVX was injected into rabbits once a week for 5 weeks. Antiserum was collected 10 days after the last injection. Produced antiserum was determined 1/1024 titers by means of microprecipitin tests and showed sharp reactions in agar gel-diffusion tests.

  • PDF

Tolerance of Nicotiana tabacum Cultivars Dixie Bright 244-2, McNair 30, and Golden Stock Penish to Strains of Potato Virus Y (PVY 계통들에 대한 잎담배 품종 Dixie Bright 244-2, McNair 30 및 Golden Stock Penish의 내병성 반응)

  • Park Eun Kyung;Gooding G. V.
    • Korean Journal Plant Pathology
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 1986
  • The reaction of seven cultivars of Nicotiana tabacum to eight naturally occurring strains of potato virus Y from tobacco and one from potato was determined by mechanical inoculations in greenhouse tests. Dixie Bright 244-2, McNair 3D, and Golden Stock Penish were highly tolerant to three mild strains, two from the United States and one from Korea, and to four severe strains, one each from the United States, West Germany, South Africa, and Korea. They also had some tolerance to a severe strain from Child and one from United States. Virus concentration in infected leaf tissue was virus strain-and cultivar-dependent.

  • PDF

Resistance Characteristics of Flue-cured Tobacco Plants Transformed with CDNA of Potato Virus Y Replicase Gene (감자 바이러스 Y 복제유전자 cDNA로 형질전환된 황색종 담배의 저항성 특성)

  • 박은경;백경희;유진삼;조혜선;강신웅;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • A flue-cured tobacco variety (Nicotiana tabacum cv. Wisconsin) was used for Plant transformation with the complementary DNA (cDNA) of potato virus Y-necrosis strain (PVY-VN) replicase gone (Nb) which was synthesized through reverse-transcription Primed with oligo(dT) and Polymerization using RNase H-digested template. The cDNA was cloned into Plant expression vector Plasmid (PMBP2), and introduced into tobacco plants by co-culturing tobacco leaf disks with Agrobacterium tumefaciens LBA4404 containing the plasmid before Plant regeneration. Eight Plants, in which the inserted cDNA fragment was detected by Polymerase chain reaction (PCR), out of 70 putative transformants inserted with sense-oriented Mb cDNA showed no symptom at 3 weeks after inoculation, while the other 62 plants, and all plants with vector gone only and antisense-oriented NIb cDNA had susceptible vein-necrosis symptoms. However, only 2 of the 8 resistant plants were highly resistant, which remained symptomless up to 10 weeks after inoculation. Among the first progenies (T1) from self-fertilized seeds of the two resistant transgenic plants, less than 10 % of 71 plants appeared highly resistant (with no symptom), 70% moderately resistant (with mild symptoms on 1 - 2 leaves), and about 20% susceptible (with susceptible symptoms on 3 or more leaves) at 3 weeks after inoculation. These results suggest that the PVY resistance was inherited in the 71 generation. Key words : potato virus Y. viral replicase gene, transgenic tobacco Plants, resistance.

  • PDF