• Title/Summary/Keyword: potato cultivar

Search Result 124, Processing Time 0.046 seconds

A New Potato Cultivar "Early Valley", with High Yield and Early Maturity

  • Lim, H.T.;Dhital, S.P.;Khu, D.M.;Choi, S.P.;Kang, C.W.;Kim, T.J.;Mo, H.S.;Hwang, W.N.;Lee, W.J.
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • "Early Valley", is an early maturing potato cultivar with high yield potential. "Early Valley" is a clonal selection resulting from the cross between 'Suncrisp' and 'A87109-10'. It has medium plant height and light green foliage. "Early Valley" has medium flowering habit and white flowers. Tubers are smooth, yellow skin, light yellow flesh, round tuber shape, medium eye depth, and medium dormancy and good keeping quality. It has stable yield under wide range of climatic conditions. "Early Valley" is resistance to late blight, but moderately susceptible to common scab and hollow heart. This cultivar is also resistant to potato rotting at harvesting during the raining season. "Early Valley" has high level of antioxidant activity (about three times higher) and vitamin C (higher by 40%) than the 'Superior'. This cultivar has high level of tuber uniformity and capable of yielding 36.56 t/ha which is 17.07% higher than the control potato cultivar 'Superior' under optimum agronomical practices.

A High Yield and Processing Potato Cultivar 'Taedong Valley'

  • Dhital, Shambhu P.;Lian, Yu J.;Hwang, Won N.;Lim, Hak T.
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.207-211
    • /
    • 2010
  • 'Taedong Valley' is a high yielding and processing potato cultivar, which is a clonal selection resulting from a cross between 'W870' and 'A88431-1'. It is a medium maturating cultivar with medium plant height and light green foliage. 'Taedong Valley' has profuse flowering habit and light purple flowers. Tubers are smooth, round, and with yellow skin, light yellow flesh, medium eye depth. Tubers have medium dormancy and good keeping quality. 'Taedong Valley' has stable yield under wide range of climatic conditions. It is resistant to common scab and potato virus Y, but moderately susceptible to late blight. It is also resistant to most of the disorders, particularly dehiscence, hollow heart and internal brown spots. This cultivar has high level of tuber uniformity and capable of yielding 43.6 t/ha which is about 9.0% higher than the control potato cultivar 'Atlantic' under optimum agronomical practices.

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Gui Valley: A High Yielding Potential and Good Processing Potato Cultivar

  • Lim, Hak-Tae;Dhital, Shambhu Prasad;Khu, Don-Man;Li, Kui-Hwa;Choi, Seon-Phil;Kang, Chang-Won;Kim, Tae-Joo;Mo, Hwang-Sung;Hwang, Won-Nam;Lee, Woo-Jong
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.483-488
    • /
    • 2009
  • The main objective of this breeding program is to develop high yielding, disease resistance and good processing potato cultivar. 'Gui Valley' is a clonal selection resulting from a cross between 'ND2471-8' and 'Cona'. It has medium plant height and light green foliage. 'Gui Valley' has medium flowering habit and light pink flowers. 'Gui Valley' is a medium maturing potato cultivar and tubers are smooth, yellow skin, light yellow flesh, long-oval tuber shape, distinct red eyes with medium depth and medium dormancy. It has high level of tuber uniformity and good keeping quality. 'Gui Valley' demonstrates resistance to potato virus Y (PVY), soft rot, but moderately susceptible to late blight and common scab. It is also resistant to most of the internal and external physiological disorders particularly dehiscence, hollow heart and internal brown spot. The specific gravity of 'Gui Valley' is significantly higher (1.097) than that of 'Shepody' (1.078). 'Gui Valley' has suitable for processing mainly French fries and chips. This cultivar has high level of tuber uniformity and capable of yielding 37.6 $t{\cdot}ha^{-1}$, which is 18.2% higher than the control potato cultivar 'Shepody' under optimum agronomical practices.

Effect of Alternaria solani Exudates on Resistant and Susceptible Potato Cultivars from Two Different pathogen isolates

  • Shahbazi, Hadis;Aminian, Heshmatollah;Sahebani, Navazollah;Halterman, Dennis
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • Early blight of potato, caused by Alternaria solani, is a ubiquitous disease in many countries around the world. Our previous screening of several Iranian potato cultivars found that significant variation in resistance phenotypes exists between two cultivars: resistant 'Diamond' and susceptible 'Granula'. Our previous analysis of five different pathogen isolates also identified varying degrees of aggressiveness regardless of the host cultivar. Here, a bioassay was used to study the role of liquid culture exudates produced in vitro on pathogenicity and elicitation of disease symptomology in seedlings as well as detached leaves. Responses of host genotypes to the exudates of the two A. solani isolates were significantly different. Detached leaves of the resistant cultivar 'Diamond' elicited fewer symptoms to each isolate when compared to the susceptible cultivar 'Granula'. Interestingly, the phytotoxicity effect of the culture filtrate from the more aggressive isolate A was higher than from isolate N suggesting an increased concentration or strength of the toxins produced. Our results are significant because they indicate a correlation between symptoms elicited by A. solani phytotoxins and their aggressiveness on the host.

Nutrient Composition of Domestic Potato Cultivars (국내산 감자 품종별 영양 성분 비교)

  • Kwon, Oh-Yun;Kim, Hyun-Ju;Oh, Sang-Hee;Lee, Jeong-Hee;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Park, Chun-Soo;Kim, Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.6
    • /
    • pp.740-746
    • /
    • 2006
  • The proximates, vitamin C, minerals, and fatty acids of five potato cultivars were evaluated by AOAC methods, the hydrazine method, ICP-AES, and gas chromatography, respectively. The proximate analyses; vitamin C, reducing sugar, and soluble solid contents; and mineral and fatty acid compositions were significantly different among the five cultivars. The Superior cultivar contained a higher carbohydrate content and higher Ca/P ratio and lower levels of crude protein and Na. The Atlantic cultivar contained significantly higher amount of energy, carbohydrate, reducing sugar, vitamin C, SEA, and MUFA, and significantly lower amount of minerals and PUFA. The Shepody cultivar contained significantly higher amount of carbohydrate and MUFA, and significantly lower amount of soluble solid, vitamin C, and SFA. In addition, the P, Fe, Mg, Cu, and Al levels were significantly higher in Shepody, and Zn content was significantly lower. The Jopung cultivar contained significantly higher levels of moisture and Na, and significantly lower levels of soluble content, reducing sugar, carbohydrate, crude protein, and fat. Finally, the Namsuh cultivar contained significantly higher amount of soluble solid, crude protein, K, Mg, and Al, and significantly lower amount of reducing sugar.

  • PDF

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol;Gupta, Ravi;Krishna, R.;Kim, Sun Tae;Lee, Dong Yeol;Hwang, Duk-ju;Bae, Shin-Chul;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.

Nutrient Components and Physicochemical Properties of New Domestic Potato Cultivars (국내산 신품종 감자의 영양성분 및 이화학적 특성)

  • Choi, Hee-Don;Lee, Hae-Chang;Kim, Sung-Soo;Kim, Yun-Sook;Lim, Hak-Tae;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.382-388
    • /
    • 2008
  • This study examined the nutrient components and physicochemical properties of three new potato cultivars: Gui Valley, Bora Valley, and Gogu Valley, which were acquired from PotatoValley Ltd., and compared them to the Superior cultivar that is widely distributed in food markets. Amino acid, fatty acid, and mineral compositions, as well as total starch, reducing sugar, dietary fiber, vitamin C, and phenolic acid contents were measured. The gelatinization and pasting properties of the potatoes were evaluated using differential scanning calorimetry (DSC) and a rapid visco analyzer (RVA). The three new potato cultivars showed differences for various characteristics compared to the existing Superior cultivar. The Gui valley cultivar has a high potential for processing into items such as French fries or chips, due to its high starch content and low reducing sugar content. Bora valley showed an incredibly high phenolic acid contents, and Gogu valley contained high levels of dietary fiber, minerals, vitamin C, and essential amino acids. Overall, these cultivars are expected to be highly valuable items for develpment and applications of functional food.

Changes in Physicochemical Attributes of Potato Slices with Different Cultivars during Cold Storage (품종별 한국산 감자 슬라이스의 냉장 중 이화학적 품질의 변화)

  • Chung, Hyoun-Mi;Lee, Gui-Ju
    • Journal of the Korean Society of Food Culture
    • /
    • v.10 no.2
    • /
    • pp.97-100
    • /
    • 1995
  • Three potato cultivars were prepared as slices and stored for 4 weeks at $5^{\circ}C$. Changes in Vitamin C content and other quality factors, such as color, pH, soluble solid and protein content were determined. Vitamin C content and L value decreased in three potato cultivars. Initial Vitamin C contents of three potato cultivars varied from 49.27 mg% in Sumi to 56.40 mg% in Namjak. Changes in L value showed that the tendency of browning in Daejima was slower than Sumi and Namjak. Changes in pH were small. Soluble solids and protein content increased and varied by cultivar. From the correlation analysis, correlation between browning degree and Vitamin C content was low in three potato cultivars.

  • PDF

An efficient transformation method for a potato (Solanum tuberosum L. var. Atlantic)

  • Han, Eun-Hee;Goo, Young-Min;Lee, Min-Kyung;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • We found that a long period of in vitro culture is a critical factor on the low transformation rate for a specific potato genotype, Solanum tuberosum L. var. Atlantic when phosphinothricin (PPT) was added to select putative transformants in a solid media. The fresh explants of the newly produced plants from a micro-tuber was able to increase the transformation rate significantly while the old explants prepared from a plant maintained for longer than 6 months in vitro by sub-culturing every 3 ~ 4 weeks resulted in a very low transformation frequency. However, Jowon cultivar was not so much influenced by the period of in vitro culture with high transformation rate (higher than 10.0%). Further research need to be explored for the reason why a particular potato genotype, Atlantic is more vulnerable than the Jowon cultivar during the regeneration stage resulting in the low transformation frequency.