DOI QR코드

DOI QR Code

Effect of Alternaria solani Exudates on Resistant and Susceptible Potato Cultivars from Two Different pathogen isolates

  • Shahbazi, Hadis (Young Researchers Club, Arak Branch, Islamic Azad University) ;
  • Aminian, Heshmatollah (Department of Plant Protection, Aboryhan Campus, Tehran University) ;
  • Sahebani, Navazollah (Department of Plant Protection, Aboryhan Campus, Tehran University) ;
  • Halterman, Dennis (U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit)
  • Received : 2010.12.10
  • Accepted : 2011.02.12
  • Published : 2011.03.01

Abstract

Early blight of potato, caused by Alternaria solani, is a ubiquitous disease in many countries around the world. Our previous screening of several Iranian potato cultivars found that significant variation in resistance phenotypes exists between two cultivars: resistant 'Diamond' and susceptible 'Granula'. Our previous analysis of five different pathogen isolates also identified varying degrees of aggressiveness regardless of the host cultivar. Here, a bioassay was used to study the role of liquid culture exudates produced in vitro on pathogenicity and elicitation of disease symptomology in seedlings as well as detached leaves. Responses of host genotypes to the exudates of the two A. solani isolates were significantly different. Detached leaves of the resistant cultivar 'Diamond' elicited fewer symptoms to each isolate when compared to the susceptible cultivar 'Granula'. Interestingly, the phytotoxicity effect of the culture filtrate from the more aggressive isolate A was higher than from isolate N suggesting an increased concentration or strength of the toxins produced. Our results are significant because they indicate a correlation between symptoms elicited by A. solani phytotoxins and their aggressiveness on the host.

Keywords

References

  1. Bokshi, A., Morris, S. and Deverall, B. 2003. Effects of benzothiadiazole and acetylsalicylic acid on $\beta$-1,3-glucanase activity and disease resistance in potato. Plant Pathol. 52:22-27. https://doi.org/10.1046/j.1365-3059.2003.00792.x
  2. Brian, P. W., Elson, G. W., Hemming, H. G. and Wright, J. M. 1952. The phytotoxic properties of alternaric acid in relation to the etiology of plant diseases caused by Alternaria solani (Ell. & Mart.) Jones & Grout. Ann. Appl. Biol. 39:308-321. https://doi.org/10.1111/j.1744-7348.1952.tb01013.x
  3. Ellis, M. G. and Gibson, I. A. S. 1975. Alternaria solani. Commonwealth Mycological Institute, Kew, Surrey, UK. Gilchrist, D. G. and Grogan, R. G. 1976. Production and nature of a host-specific toxin from Alternaria alternata f.sp. lycopersici. Phytopathology 66:165-171.
  4. Hanneke, M. A., Witsenboer, C. E., Schaik, V., Bino, R. J., Löffler, H. J. and Jackes, H. 1988. Effects of Alternaria alternata f. sp. lycopersici toxins at different levels of tomato plant cell development. Plant Sci. 56:253-260. https://doi.org/10.1016/0168-9452(88)90105-7
  5. Hernandez, M. M., Kowalski, B., Lorenzo, P. and Ortiz, U. 1991. Effectiveness of the filtrate use of Alternaria solani (Ellis and Martin) (J and G) in the selection in vitro of resistance forms. Cult. Trop. 12:48-50.
  6. Langsdorf, G., Park, P. and Nishimura, S. 1991. Investigations on Alternaria solani infections: Effect of alternaric acid on the ultrastructure of tomato cells. Ann. Phyto. Soc. Jap. 57:32-41. https://doi.org/10.3186/jjphytopath.57.32
  7. Lourenco, V., Moya, A., Gonzalez-Candelas, F., Carbone, I., Maffia, L. A. and Mizubuti, E. S. G. 2009. Molecular diversity and evolutionary processes of Alternaria solani in Brazil inferred using genealogical and coalescent approaches. Phytopathology 99:765-774. https://doi.org/10.1094/PHYTO-99-6-0765
  8. Lynch, D. R., Coleman, M. C. and Lyon, G. D. 1991. Effect of Alternaria solani culture filtrate on adventitious shoot regeneration in potato. Plant Cell Rep. 9:607-610.
  9. Maiero, M., Bean, G. A. and Ng, T. J. 1991. Toxin production by Alternaria solani and its related phytotoxicity to tomato breeding lines. Phytopathology 81:1030-1033. https://doi.org/10.1094/Phyto-81-1030
  10. Martinez, P. R. and Sinclair, M. 1994. Selection in vitro of resistance to early blight (Alternaria solani Sorauer.) in creole potatoes (Solanum phureja Junz). Fitopatol. Colomb. 18:90-100.
  11. Matern, U., Strobel, G. and Shepard, J. 1978. Reaction to phytotoxins in a potato population derived from mesophyll protoplasts. Proc. Natl. Acad. Sci. USA. 75:4935-4939. https://doi.org/10.1073/pnas.75.10.4935
  12. Montemurro, N. and Visconti, A., 1992. Alternaria metabolites – chemical and biological data. In: Alternaria biology, plant disease and metabolites, ed. by J. Chelkowski and A. Visconti, pp. 449-558.
  13. Elsevier, Amsterdam, Netherland. Nadia, G., El-Gamal, G., Abd-El-Kareem, F., Fotouh, Y. and El-Mougy, N. 2007. Induction of systemic resistance in potato plants against late and early blight diseases using chemical inducers under greenhouse and field conditions. Res. J. Ag. Bio. Sci. 3:73-81.
  14. Neergaard, P. 1945. Danish species of Alternaria and Stemphylium: taxonomy, parasitism, economical significance. Munksgaard, Copenhagen, Denmark, 560 pp.
  15. Otani, H., Kohmoto, K. and Kodama, M. 1995. Alternaria toxins and their effects on host plants. Can. J. Bot. 73:453. https://doi.org/10.1139/b95-282
  16. Pelletier, J. and Fry, W. 1989. Characterization of resistance to early blight in three potato cultivars: Incubation period, lesion expansion rate, and spore production. Phytopathology 9:511- 517.
  17. Pound, G. S. and Stahmann, M. A. 1951. The production of a toxic material by Alternaria solani and its relation to early blight disease of tomato. Phytopathology 41:1104-1114.
  18. Rodríguez, N. V., Kowalski, B., Rodríguez, L. G., Caraballoso, I. B., Suárez, M. A., Perez, P. O., Quintana, C. R., González, N. and Ramos, R. Q. 2007. In vitro and ex vitro selection of potato plantlets for resistance to early blight. J. Phytopath. 155:582-586. https://doi.org/10.1111/j.1439-0434.2007.01282.x
  19. Rotem, J. 1994. The genus Alternaria: biology, epidemiology, and pathogenicity. APS Press, St. Paul, Minnesota, USA, 326 pp.
  20. Scherf, A. F. and MacNab, A. A. 1986. Vegetable diseases and their control. Wiley, New York, USA, 729 pp.
  21. Shahbazi, H., Aminian, H., Sahebani, N. and Halterman, D. 2010. Biochemical evaluation of resistance responses of potato to different isolates of Alternaria solani. Phytopathology 100: 454-459. https://doi.org/10.1094/PHYTO-100-5-0454
  22. Siler, D. J. and Gilchrist, D. G. 1983. Properties of host specific toxins produced by Alternaria alternata f. sp. lycopersici in culture and in tomato plants. Phys. Plant Pathol. 23:265-274. https://doi.org/10.1016/0048-4059(83)90009-7
  23. Svabova, L. and Lebeda, A. 2005. In vitro selection for improved plant resistance to toxin-producing pathogens. J. Phytopath. 153:52-64. https://doi.org/10.1111/j.1439-0434.2004.00928.x
  24. van der Waals, J. E., Korsten, L. and Slippers, B. 2004. Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Dis. 88:959-964. https://doi.org/10.1094/PDIS.2004.88.9.959
  25. van Dyke, C. G. and Trigano, R. N. 1987. Light and scanning electron microscopy of the interaction of the biocontrol fungus Alternaria cassiae with sicklepod (Cassia obtusifolia). Can. J. Plant Pathol. 9:230-235. https://doi.org/10.1080/07060668709501879
  26. Veitía, N., Dita, M. A., García, L., Herrera, L., Bermudez, I., Acosta, M., Clavero, J., Orellana, P., Romero, C. and García, L. 2001. Use of tissue culture and the mutagenesis in vitro for the improvement of the resistance to Alternaria solani (Solanum tuberosum Lin.), to var Desiree. Biotechnol. Veg. 1:43-47.
  27. Von Ramm, C. 1962. Histological studies of infection by Alternaria longipes on tobacco. Phytopath. Zeit. 45:391-398. https://doi.org/10.1111/j.1439-0434.1962.tb02051.x
  28. Weir, T. L., Huff, D. R., Christ, B. J. and Romaine, C. P. 1998. RAPD-PCR analysis of genetic variation among isolates of Alternaria solani and Alternaria alternata from potato and tomato. Mycologia 90:813-821. https://doi.org/10.2307/3761323
  29. Ahmed, S., Palermo C., Wan, S. and Walworth, N. C. 2004. A novel protein with similarities to Rb binding protein 2 compensates for loss of Chk1 function and affects histone modification in fission yeast. Mol. Cell. Biol. 24: 3660-3669. https://doi.org/10.1128/MCB.24.9.3660-3669.2004
  30. Aasland, R. Gibson, T. J. and Stewart, A. F. 1995. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20:56-59. https://doi.org/10.1016/S0968-0004(00)88957-4
  31. Balciunas, D. and Ronne, H. 2000. Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci. 25:274-276. https://doi.org/10.1016/S0968-0004(00)01593-0
  32. Banuett, F. and Herskowitz, I. 1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:2965-2976.
  33. Debuchy, R. and Turgeon, B. G. 2006. Mating-type structure, evolution, and function in Euascomycetes. In: The Mycota I. Growth, differentiation and sexuality, ed. by U. Kues and R. Fischer, pp. 293-320.

Cited by

  1. Screening of Potato Lines Including Department Genetic & National Plant Gene Bank of Iran for Resistance to Early Blight (<i>Alternaria. solani</i>) Using Culture Filtrate Produced by the Fungus vol.04, pp.10, 2013, https://doi.org/10.4236/ajps.2013.410256
  2. Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming vol.15, pp.1, 2014, https://doi.org/10.1186/1471-2164-15-334