• Title/Summary/Keyword: potato blackleg disease

Search Result 5, Processing Time 0.018 seconds

Selection of bactericides for control of potato Blackleg disease in Korea (감자흑각병 (Potato Blackleg Disease) 방제를 위한 살균제 선발)

  • Zhu, Yong-Zhe;Park, Duck-Hwan;Park, Dong-Sik;Yu, Yong-Man;Kim, Song-Mun;Lim, Chun-Keum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2003
  • Potato blackleg disease caused by Erwinia carotovora subsp. atroseptica has been a serious problem in Korea. It was previously reported that four mixtures [streptomycin (9.3 ppm) + copper oxide (171.6 ppm)/copper hydroxide (146.3 ppm), streptomycin sulfate (7.0 ppm)+copper oxide (171.6ppm)/copper hydroxide (146.3 ppm)] were effective for the control of E. carotovora subsp. atroseptica. in in vitro test. Using those four mixtures and two antibiotics [streptomycin (81.4 ppm) and streptomycin sulfate (61.3 ppm)], the effectiveness of control for E. carotovora subsp. atroseptica. was conducted in the field. Two antibiotics showed over 60% of control efficacy under different soil conditions, while mixtures of two antibiotics with copper compounds did not show any control effects on the infected seed potato. Two mixtures [streptomycin (27.9 ppm)+copper hydroxide (438.9 ppm), streptomycin sulfate (21.0 ppm) + copper oxide (514.8 ppm)] were effective in the control of potato blackleg disease on the infected potato plants under different climate conditions.

Genetic Characterization of Potato Blackleg Strains from Jeju Island (제주지역에서 분리한 감자 줄기검은병균의 유전적 특성)

  • Seo Sang-Tae;Lee Seungdon;Lee Jung-Sup;Han Kyoung-Suk;Jang Han-Ik;Lim Chun-Keun
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.140-145
    • /
    • 2005
  • A collection of 12 Erwinia carotovora strains from blackleg diseased potato in Jeju island was characterized genetic diversity by 5. cayotovora subsp. atposeptica (Eca)-specific PCR, PCR-RFLP of the two genes (16S rRNA and pel) and repetitive sequence PCR (ERIC-PCR). The results were compared with those of the other E. carotovora representative strains. None of the blackleg strains produced PCR amplicons with Eca-specific primers in contrast to the single 690 bp amplicon obtained with Eca strains. In addition, on the basis of pel gene RFLP with Sau3AI, the blackleg strains belonged to the pattern 2 whereas Eca strains belonged to the other one (pattern 3). By analysis of 16S rDNA RELP generated with HinfI, the most strains including the E. carotovera subsp. carotovora (Ecc) representative strains used in this study belonged to the pattern 1 whereas the blackleg strains belonged to the pattern 2 except for one strain. Moreover, ERIC-PCR analysis showed that the blackleg strains were closely related to each other and had an unique DNA band. Based on these molecular approaches, we have confirmed that the blackleg disease of potato is caused by a different E. carotovora from Eca and Ecc in Jeju island.

Chemical control of potato Blackleg disease caused by Erwinia carotovora subsp. atroseptica in Korea (감자 흑각병원균 Erwinia carotovora subsp. atroseptica의 화학적 방제)

  • Yu, Yong-Man;Zhu, Yong-zhe;Bae, Hu-Nam;Kim, Song-Mum;Lim, Chun-Keum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • Potato blackleg disease caused by Erwinia carotovora subsp. atroseptica (Eca) has been a serious problem in Korea. Bactericidal activities of twelve bactericides including antibiotics, copper compounds and oxolinic acid were examined in vitro. Streptomycin, streptomycin sulfate, and oxolinic acid effectively controlled the pathogen at 0.02 mM. However, the pathogen developed resistance to the applied bactericides after 72 hours of incubation. Activity of copper compounds such as copper hydroxide, copper oxide and copper sulfate was lower than that of antibiotics. However, the pathogen did not develop resistant to them. Combinations of streptomycin (0.016 mM, 9.3 ppm) + copper oxide (1.2 mM, 171.6 ppm)/copper hydroxide (1.5 mM, 146.3 ppm); streptomycin sulfate (0.005 mM, 7.0 ppm) + copper oxide (1.2 mM, 171.6ppm)/copper hydroxide (1.5 mM, 146.3 ppm) were found to be effective for the control of E. carotovora subsp. atroseptica.

Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease

  • Seonmi, Yu;Jihee, Kang;Eui-Hwan, Chung;Yunho, Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.62-74
    • /
    • 2023
  • Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.