• Title/Summary/Keyword: potassium ions

Search Result 190, Processing Time 0.023 seconds

Effect of Aluminum Potassium Sulfate Addition on the Color Change in Caesalpinia Sappan Dyeing by Rice Straw Ash Solution (볏짚 잿물 매염에 의한 소목 염색에서 명반 첨가가 색상변화에 미치는 영향)

  • Seo Hee-Sung;Jeon Dong-Won;Kim Jeon-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1465-1474
    • /
    • 2005
  • The primary purpose of this study is to investigate the differences in the characteristics of the mordants, synthetic aluminum mordants and ash solutions as natural mordants, used in Caesalpinia sappan dyeing. By introducing aluminum potassium sulfate in the ash solutions, the behavior of the aluminum in the ash solutions were observed. In the rice straw ash solutions, adjusted to the levels of pH6 and pH10, the aluminum potassium sulfate was introduced to achieve various concentration levels. From the analysis of the ash solution of pull, $K^+$ and $Na^+$ ion concentrations were found to be extremely high, while $Al^+$ ion concentration was 0. The color development in the Caesalpinia sappan dyeing by ash solution mordanting was found to be mainly governed not by the mordanting actions of the metallic ions but by those of alkali components. In the case of cotton, the application of pH10 ash solution promoted reddish color development compared to the case of non-mordanting, regardless of the aluminum potassium sulfate addition. In the case of silk, the application of pH10 ash solution increased a* value and decreased b* value compared to the case of non-mordanting.

Crystal Structure of Penicillin V Potassium Salt

  • Kim, Whan-Chul;Yi, Seung-Ho;Shin, Jung-Mi;Yoon, Tae-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.713-717
    • /
    • 1993
  • The crystal structure of the potassium salt of penicillin V has been studied by the X-ray crystallographic methods. Crystal data are as follows; potassium 3,3-dimethyl-7-oxo-6-phenoxyacetoamido-4-thia-1- azabicyclo[3.2.0]-heptane-2${\alpha}$-carboxylate, $K^+{\cdot}C_{16}H_{18}N_2O_5S^-$, $M_r$= 388.5, triclinic, Pl, a= 9.371 (1), b= 12.497 (2), c= 15.313 (2) ${\AA},\;{\alpha}= 93.74\;(2),\;{\beta}=99.32\;(1),\;{\gamma}=90.17\;(1)^{\circ},\;V=1765.7\;(2)\;{\AA}^3$, Z=4, $D_m=1.461\;gcm^{-1},\;{\lambda}(Cu\;K{\alpha})=1.5418\;{\AA},\;{\mu}=40.1\;cm^{-1}$, F(000)=808, T=296 K. The structure was solved by the heavy atom and difference Fourier methods with intensity data measured on an automated four-circle diffractometer. The structure was refined by the full-matrix least-squares method to a final R= 0.081 for 3563 observed $[I_0{\geq}2{\sigam}(I_0)]$ reflections. The four independent molecules assume different overall conformations with systematically different orientations of the phenyl groups although the penam moieties have the same closed conformations. There are intramolecular hydrogen bonds between the exocyclic amide nitrogen and phenoxy oxygen atoms. The penam moiety is conformationally very restricted although the carboxyl and exocyclic amide groups apparently have certain rotational degrees of freedom but the phenyl group is flexible about the ether bond despite the presence of the intramolecular N-H${\cdots}$O hydrogen bond. There are complicated pseudo symmetric relationships in the crystal lattice. The penam moieties are related by pseudo 20.5 screw axes and the phenyl groups by pseudo centers of symmetry. The potassium ions, related by both pseudo symmetries, form an infinite zigzag planar chain parallel to the b axis. Each potassium ion is coordinated to seven oxygen atoms in a severely distorted pentagonal bipyramid configuration, forming the infinite hydrophilic channels which in turn form the molecular stacks. Between these stacks, there are only lipophilic interactions involving the phenyl groups.

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

The Action of Acetylcholine on the End-Plate Potential

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.9 no.2
    • /
    • pp.41-48
    • /
    • 1975
  • The failure of the action potential at the end-plate membrane to reach the sodium equilibrium potential is due to the stimulating action of acetylcholine on $Na^+-K^+$ pump. This action of acetylcholine causes an enormous increase in the $K^+$ transport rate. The quantitative amount of potassium ions in the inside of the end-plate membrane prevented the permeability of sodium ions during the depolarization phase of the action potential. It would favor the changes in the shape of action potential by acetylcholine which are always toward a fixed potential slightly below the zero line. The increased $Na^+-K^+$ pump activity by acetylcholine is responsible for the hypopolarization of membrane. This reduces the membrane resistance of the end-plate during transmitter activity.

  • PDF

A Study on the Origin of Spontaneous Firing (신경세포 Spontaneous Firing의 Origin에 대한 이론적 연구(I))

  • 서병설
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.3-14
    • /
    • 1981
  • A theoretical investigation of the origin of the spontaneous firing in the squid axon was done with a mathmatical computer modelling based on the Hodgkin-Huxley equation. It is strongly believed that the existence of calcium ions in the membrane is essential to cause firing. The results of the computer simulation of the modelling indicate that the sites of calcium ions in the membrane might be near the potassium channel and the leakage channel plays an important role in the firing. The orientation of the future research project was suggested. And also, a theoretical investigation of the origin of the firing in the propagating action potential was done in the same way.

  • PDF

Characteristics of $PM_{2.5}$ in Kanghwa (강화에서의 $PM_{2.5}$ 특성)

  • 최민규;여현구;임종억;조기철;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.573-583
    • /
    • 2000
  • In order to investigate the characteristics of PM(sub)2.5 in the background area, the following pollutant were measured from February 1996 to June 1999 in Kanghwa: PM(sub)2.5 mass, sulfate, nitrate, chloride, ammonium, sodium, calcium, magnesium and potassium. The mean concentration of PM(sub)2.5 mass was 25.8$\pm$1.2$\mu\textrm{g}$/㎥(range 5.18~85.74). This value was higher than the annual PM(sub)2.5 US NAAQS(15$\mu\textrm{g}$/㎥) and the total number of samples higher than the 24-h PM(sub)2.5 US NAAQS(65$\mu\textrm{g}$/㎥) was seven. PM(sub)2.5 masses also showed temporal variations both yearly and seasonally. Total water soluble ions constituted about 45% of PM(sub)2.5 miss, and sulfate, nitrate and ammonium were main components in water soluble ions. Compared with the literature data from other areas, the measured PM(sub)2.5 concentrations were relatively high.

  • PDF

Temperature effect on multi-ionic species diffusion in saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Limkatanyu, Suchart;Xi, Yunping
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.149-171
    • /
    • 2014
  • This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

A Study of Gigahertz Nanotube Actuator using Molecular Dynamic Simulation (기가헤르쯔급 탄소 나노튜브 진동자의 분자동역학 시뮬레이션)

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.163-167
    • /
    • 2006
  • This paper shows a gigahertz actuator based on multi-wall carbon nanotubes(CNT) encapsulating metallic ions using classical molecular dynamics simulations. Encapsulated potassium ions accelerated by an applying external electric field could initialize a gigahertz actuator composed of a $7K^{+}(a)CNT$ oscillator.

  • PDF

Changes in Haemolymph Proteins, Hydrolases, and Inorganic tons of Heliothis assulta Injected with Bacillus thuringiensis (Bacillus thuringiensis의 주입에 따른 담배나방의 혈림프 단백질, 가수분해효소 및 무기이온의 변화)

  • 유종명;조시형;황석연;이형철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.90-96
    • /
    • 1994
  • Changes in haemolymph proteins, hydrolases such as esterase(EST), acid phosphatase(ACP) and alkaline phosphatase(ALP) , and inorganic ion(Na+, K+ and Cl- ) contents were induced by the injection of Bacillus thuringiengis into haemocoel of the last instar larva of Heliothis assulta. Protein concentration of haemolymph was increased until 24 hrs after injection, and decreased thereafter. Among the 8 basic protein bands identified through acid - polyacrylamide gel electrophoresis(PAGE), 2 bands(bands a and b) became stronger by the bacterial infection. Activities of EST and ALP increased until 12 hrs after injection and then fell down, whereas ACP activity was decreased continuously with time after injection. Contents of inorganic ions were all increased by the bacterial injection, showing slow rate of increase in the chloride ion, but rapid in the sodium and potassium ions.

  • PDF

Technology Trends for Lithium Secondary Batteries (리튬 이차전지 기술 동향)

  • Y.H. Choi;H.S. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.90-99
    • /
    • 2023
  • Recently, with the trend of information technology convergence and electrification, batteries are being widely used in fields such as industry, transportation, and specific applications. By 2030, the secondary battery market is expected to grow explosively by more than eight times compared with 2020 to $351.7 billion owing to the expanding adoption of electric vehicles. Depending on the electrochemical reactions in the electrode, a primary battery can only discharge through an irreversible reaction, while a secondary battery can be repeatedly charged and discharged using reversible reactions. According to the type of charge carrier ions, secondary batteries may be classified into those made of lithium, sodium, potassium, magnesium, and aluminum ions. We analyze the current status and technological issues of lithium-ion batteries, lithium-sulfur batteries, and solid-state batteries, which are representative examples of lithium secondary batteries. In addition, research trends in lithium secondary batteries are discussed.