• Title/Summary/Keyword: pot plants

Search Result 456, Processing Time 0.024 seconds

Study on the resistance of various herbaceous plants to the effect of heavy metals-responses of plants to soil treated with cadmium and lead- (草本植物의 重金屬 抵抗性에 關한 硏究 - Cadmium, Lead 處理 土壤에 의한 反應 -)

  • Kim, Byung-Woo;Park, Jong-Sun
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.433-449
    • /
    • 1992
  • Three horticultural herbaceous plants and a natural herbaceous plant were tested to determine the growth responses, biomass and uptake of cadmium(cd), lead(pb) by application of cd and pb soil treatment in pot culture. The ecological effects on the growth of the plants were investigated to determine the tolerance for the heavy metal pollutants cd and pb. the marginal concentrain of cd treatment on the growth of the each plant was below the 1, 000 ppm treatment of cd. The marginal concentration of pb treatment was below the 1, 000ppm treatment of pb in cultivation of salvia splendens ker., celosia cristata l. and below the 3, 000ppm treatment of pb in cultivation of portulaca grandiflora hook., sedum saramentosum bunge. the resistance for cd of sedum saramentosum bunge, celosia criastata l., portulaca grandiflora hook. and salvia splendens ker. was in the listed order. The resistence for pb was in order of sedum saramentosum bunge, portulaca grandiflora hook. Salvia splendens ker.and celosia criastata l.stems. The flowering of portulaca grandiflora hook. was sustained in the pb 1, 000ppm treated group only. The higher the concentration of pb in the soil cultivated the plants was, the less the content of leaf chlorophy11 in each plant was. The number of stomata per unit leaf area was the highest in salvia splendens ker. and in order of celosia l., sedum saramentosum bunge., portulaca grandiflora hook., the higher the cd and pb concentration of cd and pb treatment was, the more the concent of cd and pb in the part of each plant increased. the content of cd and pb in the stems of salvia spiendens ker. was the highest in the 1, 000ppm-treated ground and in order of the roots, the leaves and the flowers.

  • PDF

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK;RYU JEOUNGHYUN;CHOI SEUNGJU;KIM CHUNGWOO;GADAGI RAVI;MADHAIYAN MUNUSAMY;SESHADRI SUNDARAM;CHUNG JONGBAE;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1273-1279
    • /
    • 2005
  • Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.

Differences in Heavy Metal Accumulation in Different Medicinal Plants in Association with Lime Application

  • Kim, Hyuck-Soo;Seo, Byoung-Hwan;Bae, Jun-Sik;Kim, Won-Il;Hong, Chang-Oh;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.271-274
    • /
    • 2016
  • This study examined variation in Cd and Pb uptake among different medi cinal plants grown under the same soil environment together with immobilizing effect of lime to decrease these metals accumulation by the medicinal plants. For this, lime was incorporated into a heavy metal-contaminated soil at 1% followed by cultivation of seven different annual and 5 different biennial medicinal plants. In order for comparison, control soil without lime treatment was included and all the pot trials were carried out four replicates. Cadmium and Pb concentrations in medicinal plant roots grown in the control soil varied between 0.5 and $2.8mg\;kg^{-1}$ for Cd and 3.2 and $82.4mg\;kg^{-1}$ for Pb. The highest accumulation occurred in C. officinale and the lowest in D. batatas. Lime application decreased average Cd and Pb concentrations in the examined medicinal plants from $1.3mg\;kg^{-1}$ and $25.7mg\;kg^{-1}$ to $0.6mg\;kg^{-1}$ and $11.9mg\;kg^{-1}$, respectively in comparison with those grown in the control soil.

Uptake and Accumulation of Arsenate on Lettuce (Lactuca sativa L.) Grown in Soils Mixed with Various Rates of Arsenopyrite Gravel (유비철석 입자 혼합 토양내 상추(Lactuca sativa L.)의 비소이온 흡수와 축적)

  • Shim, Ho-Young;Lee, Kyo-Suk;Lee, Dong-Sung;Jeon, Dae-Sung;Shin, Ji-Su;Kim, Soo-Bin;Cho, Jin-Woong;Chung, Doug-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.532-538
    • /
    • 2014
  • Arsenic (As) is nonessential element toxic to plants. In Korea little is not only known about the extent of actual anthropogenic sources and inputs of arsenic to the agricultural land which plays a active role as a sink, but also systematic research on arsenic as an toxic element entering the food chain via the soil-plant pathway has not been investigated in the fields and greenhouses besides in few places of abandoned mining sites. Therefore, it is important to focus on the effect of As-contaminated soils on As uptake and biomass production of lettuce plants. In this study, As concentrations in the soil and accumulation of As in lettuce transferred by As uptake from soils were investigated. To do this, soil which was mixed with various rates of arsenopyrite gravels containing arsenic from 0 to 100% was packed into a round plastic pot. Then, 10 days old vegetable crops of chinese cabbage and lettuce after germination were transplanted into a pot. Growth of lettuce was observed for four weeks with one week interval. All experiments were done by triplicate. The results showed that the growth rates for number of leaves, width and length of the crop plants were retarded with increasing amount of gravel mixed due to increasing bioavailable amount of arsenate with increasing rate of gravel in soils. With these results, we conclude that the bioavailable amount of arsenate can influence the growth of lettuce.

Influence of Zeolite Application on the Growth and N2 Fixation Pea-Plant (Zeolite 시용(施用)이 완두(豌豆)의 생육(生育) 및 질소고정(窒素固定)에 미치는 영향(影響))

  • Ahn, Sang-Bae;Yoneyama, T.;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.227-231
    • /
    • 1990
  • A pot experiment was conducted to find out the effect of zeolite application on the growth and $N^2$ fixation of pea plants. The results are as follows. 1) The dry weight of pea plants grown with N-fertilizer application was smaller than that without N, but In was increased by application of zeolite 2) The N content in pea plants was increased by zeolite application. The N increment was smaller in 2% zeolite plots than in 1% zeolite plots. Larger amount of Ammonium were remained in the former plots. 3) The N amounts accumulated in different parts of plant derived from $^{15}N$-labelled fertilizer were decreased by application of zeolite. 4) The N derived from atmuspheric $N_2$ was increased by zeolite application. However, the application of fertilizer nitrogen depressed the enhancement of fixed-N accumulation.

  • PDF

Utilizing chromosome segment substitution lines (CSSLs) to evaluate developmental plasticity of root systems in hardpan penetration and deep rooting triggered by soil moisture fluctuations in rice

  • Nguyen, Thi Ngoc Dinh;Suralta, Roel R.;Mana, Kano-Nakata;Mitsuya, Shiro;Stella, Owusu Nketia;Kabuki, Takuya;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.321-321
    • /
    • 2017
  • Water availability in rainfed lowlands (RFL) is strongly affected by climate change. In RFL, rice plants are exposed to soil moisture fluctuations (SMF) but rarely to simple progressive drought as widely believed. Typical RFL field is characterized by a about 5-cm thick high bulk density hardpan layer underneath the cultivated layer at about 20 cm depth that impedes deep root development. Root system has the ability to develop in response to changes in SMF, known as phenotypic plasticity. We hypothesized that genotypes that can adapt to RFL have root plasticity. The roots can sharply respond to re-wetting after drought period and thus penetrate the hardpan layer when the hardpan is wet and so becomes relatively soft, and thus access water under the hardpan. This study aimed to identify CSSLs derived from a cross between Sasanishiki and Habataki which adapted to such RFL conditions. We used 39 CSSLs together with the parent Sasanishiki, which were grown in hydroponics and pot under transient soil moisture stresses (drought and then rewatering), and compared with continuously well-watered (WW) (control) up to 14 days after sowing (DAS), and 20 DAS, respectively. Based on the results of hydroponics and pot experiments, we selected a few lines, which were grown in the soil-filled rootbox with artificial hardpan layer and without artificial hardpan. For the rootbox without artificial hardpan, plants were grown under WW and transient soil moisture stresses for 49 DAS. While the rootbox with artificial hardpan, the plants were grown under WW (control) and SMF (WW up to 21 DAS, 1st drought (22-36 DAS), rewatering (37-44 DAS), and followed by 2nd drought (45-58 DAS)). Among the 39 CSSLs, only CSSL439 (SL39) consistently showed significantly higher shoot dry weight (SDW) than Sasanishiki under transient soil moisture stress conditions as well as SMF conditions in all the experiments. Furthermore, under WW, SL39 consistently showed no significant differences from Sasanishiki in shoot and root growth in most of traits examined. SL39 showed significantly greater total root length (TRL) than Sasanishiki under transient soil moisture stress, which is considered as phenotypic plasticity in response to rewatering after drought period. Such plastic root development was the key trait that effectively contributed to root elongation and branching during the rewatering period and consequently enhanced the root to penetrate hardpan layer when the soil penetration resistance at hardpan layer reduced. In addition, using the rootbox with artificial hardpan layer ($1.7g\;cm^{-3}$, heavily compacted), SL39 showed greater root system development than Sasanishiki under SMF, which was expressed in its significantly higher TRL, total nodal RL, and total lateral RL at hardpan layer as well as at below the hardpan layer. These results prove that SL39 has plasticity that enables its root systems to penetrate hardpan layer in response to rewatering. Under SMF, such root plasticity contributed to its higher gs and Pn.

  • PDF

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In-Sung;Kyung Hong kang;Lee, Eun-Ju
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.119-125
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<17.5$\mu\textrm{g}$/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.8$\mu\textrm{g}$/g) but cadmium was detected only in the stem (<7.4$\mu\textrm{g}$/g) and root (<10.4$\mu\textrm{g}$/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.7$\mu\textrm{g}$/g) and N. peltata (<177.5$\mu\textrm{g}$/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N.peltata$\leq$P.thunbergii

  • PDF

Behaviour of the soil residues of the bipyridylium herbicide, [$^{14}C$]paraquat in the micro-ecosystem (Micro-ecosystem중 bipyridylium 제초제 paraquat 토양잔류물의 행적)

  • Kwon, Jeong-Wook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.66-77
    • /
    • 1999
  • In order to elucidate the fate of the residues of the bipyridylium herbicide paraquat in soil, maize plants were grown for 4 weeks on the specially-made pots filled with two different types of soils containing fresh and 6-week-aged residues of [$^{14}C$]paraquat, respectively. The mineralization of [$^{14}C$]paraquat to $^{14}CO_{2}$ during the aging period and the cultivation period of maize plants amounted to $0.13{\sim}0.18%$ and $0.02{\sim}0.17%$, respectively, of the original $^{14}C$ activities. At harvest the roots and shoots contained less than 0.1% and 0.01% of the originally applied $^{14}C$ activities, respectively, whereas the $^{14}C$ activities remaining in soil were more than 97% in both soils. The water extractability of the soil where maize plants were grown for 4 weeks was less than 1.2% of the original $^{14}C$ activities. Most of the non-extractable soil-bound residues of [$^{14}C$]paraquat were incorporated into the humin fraction. Soil pHs during the aging of soil B and after cultivation in all treatments increased. The distribution of the $^{14}C$ activities in subcellular particles of the maize plant roots was the highest in the residue fraction(incompletely homogenized tissue). Dehydrogenase activities increased after vegetation, regardless of soil aging.

  • PDF

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In Sung;Kang, Kyung Hong;Lee, Eun Ju
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<$17.5_\mu$g/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.$8_\mu$g/g/g) but cadmium was detected only in the stem (<7.$4_\mu$g/g/g) and root (<10.$4_\mu$g/g/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.$7_\mu$g/g/g) and N. peltata (<177.$5_\mu$g/g/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N. peltata$\leq$P. thunbergii

Selection of Plant Species for Phytoremediation of Arsenic Contaminated Sandy Soil in a Pine Forest at Janghang, Korea (장항 송림 비소오염토양의 식물재배정화를 위한 식물종 선정)

  • Bumhan Bae;Younghun Kim
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 2024
  • A series of experiments were performed to select suitable plant species for phytoremediation of arsenic (As) contaminated sandy pine forest soil in Janghang. Native plant species could uptake and remove As and sustain growth under the allelopathy of the pine forest and half-shade environmental conditions. We transplanted a total of 11 species into the pine forest in a pot, cultured them in a greenhouse for 3 months, and then harvested these plants to measure As accumulation, fresh weight, bioconcentration factor (BCF), and the amount of As removal per plant. The BCF of Lampranthus spectabilis was 3.52 and the amount of As taken up in Pennisetum alopecuroides shoots was 111.95 mg/kg. Higher biomass plants Lampranthus spectabilis and Lonicera japonica took up 8.49 mg/kg and 2.87 mg/kg of As in the above-ground parts, respectively. We applied oxalaic acid of 10, 20, and 40 mmol/kg-soil in total (divided into 15-20 splits) to each pot over a period of one month to enhance As uptake. Results showed no significant changes in plant growth or soil dehydrogenase activity. However, a statistically significant increase (p<0.05) in As uptake in Pennisetum alopecuroides was observed when a higher amount of oxalic acid (40 mmol/kg-soil) was applied.