This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.
Journal of Korea Society of Digital Industry and Information Management
/
v.13
no.4
/
pp.81-90
/
2017
This paper presents a smart seat for correction of driver posture while driving. We introduce good postures with seat height, seat angle, head height, back of knees, distances of foot pedals, tilt of seat, etc. There have been some studies on correction of good posture while driving, effects of driving environment on driver's posture, sitting strategies based on seating pressure distribution, estimation of driver's standard postures, and others. However, there are a few studies on guide of good postures while driving for problem of driver's posture using machine leaning. Therefore, we suggest a smart seat for correction of driver's posture based on machine leaning, 1) developed the system to get postures by 10 piezoelectric effect element, 2) collect piezoelectric values from 37 drivers and 28 types of cars, 3) suggest 4 types of good postures while driving, 4) analyze test postures by kNN. As the results, we can guide good postures for bad or problems of postures while driving.
Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.
Transactions of the Korean Society of Mechanical Engineers
/
v.16
no.11
/
pp.2021-2032
/
1992
A redundant sensor system, which consists of two incremental encoders and a gyro sensor, has been proposed for the estimation of the posture of mobile robots. A hardware system was built for estimating the heading angle change of the mobile robot from outputs of the gyro sensor. The proposed hardware system of the gyro sensor produced an accurate estimate for the heading angle change of the robot. A sensor data fusion algorithm has been developed to find the optimal estimates of the heading angle change based on the stochastic measurement equations of our readundant sensor system. The maximum likelihood estimation method is applied to combine the noisy measurement data from both encoders and gyro sensor. The proposed fusion algorithm demonstrated a satisfactory performance, showing significantly reduced estimation error compared to the conventional method, in various navigation experiments.
With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.
Journal of Korean Institute of Industrial Engineers
/
v.27
no.4
/
pp.413-423
/
2001
Low back disorders (LBDs) are one of the most common and costly work-related musculoskeletal disorders. One of the major possible risk factors of LBDs is to work with static and awkward trunk postures, especially in a complex trunk posture involving flexion, twisting and lateral bending simultaneously. This study is to examine the effect of complex trunk postures on the postural stresses using a psychophysical method. Twelve healthy male students participated in an experiment, in which 29 different trunk postures were evaluated using the magnitude estimation method. The results showed that subjective discomfort significantly increased as the levels of trunk flexion, lateral bending and rotation increased. Significant interaction effects were found between rotation and lateral bending or flexion when the severe lateral bending or rotation were assumed, indicating that simultaneous occurrence of trunk flexion, lateral bending and rotation increases discomfort ratings synergistically. A postural workload evaluation scheme of trunk postures was proposed based on the angular deviation levels from the neutral position. Each trunk posture was assigned numerical stress index depending upon its discomfort rating, which was defined as the ratio of discomfort of a posture to that of its neutral posture. Four qualitative action categories for the stress index were also provided in order to enable practitioners to apply corrective actions appropriately. The proposed scheme is expected to be applied to several field areas for evaluating trunk postural stresses.
Purpose: In this study, We aim to estimate a untrained person's three postures using a 2D CNN model which is trained with minimal FFT data collected by a 24GHz FMCW radar. Method: In an indoor space, we collected FFT data for three distinct postures (standing, sitting, and lying) from three different individuals. To apply this data to a 2D CNN model, we first converted the collected data into 2D images. These images were then trained using the 2D CNN model to recognize the distinct features of each posture. Following the training, we evaluated the model's accuracy in differentiating the posture features across various individuals. Result: According to the experimental results, the average accuracy of the proposed scheme for the three postures was shown to be a 89.99% and it outperforms the conventional 1D CNN and the SVM schemes. Conclusion: In this study, we aim to estimate any person's three postures using a 2D CNN model and a 24GHz FMCW radar for disastrous situations in indoor. it is shown that the different posture of any persons can be accurately estimated even though his or her data is not used for training the AI model.
Dong Jun Kim;Yu Jin Choi;Kyung Min Park;Ji Hyun Park;Jae-Moon Lee;Kitae Hwang;In Hwan Jung
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.107-113
/
2023
This paper proposes a method for detecting smoking behavior in images using artificial intelligence technology. Since smoking is not a static phenomenon but an action, the object detection technology was combined with the posture estimation technology that can detect the action. A smoker detection learning model was developed to detect smokers in images, and the characteristics of smoking behaviors were applied to posture estimation technology to detect smoking behaviors in images. YOLOv8 was used for object detection, and OpenPose was used for posture estimation. In addition, when smokers and non-smokers are included in the image, a method of separating only people was applied. The proposed method was implemented using Google Colab NVIDEA Tesla T4 GPU in Python, and it was found that the smoking behavior was perfectly detected in the given video as a result of the test.
With the increase in the number of ICT industry workers, there is a demand for research on preventing VDT syndrome. However, existing posture correction products mostly rely heavily on cameras or sensors in wearable devices. In this paper, we have developed a posture correction system that utilizes built-in cameras and circular pressure sensors to collect posture information. Additionally, the system provides a personalized service by capturing the correct posture of the user initially and monitoring the user's posture based on that input. By precisely correcting postures during users' daily tasks, this system aims to prevent and improve VDT syndrome, ultimately enhancing the efficiency of ICT industry workers.
Journal of Korean Institute of Industrial Engineers
/
v.28
no.2
/
pp.216-222
/
2002
The ergonomic human model can be considered as a tool for the evaluation of ergonomic factors in vehicle design process. The proper anthropometric data on driver's postures are needed in order to apply a human model to vehicle design. Although studies on driver's posture have been carried out for the last few decades, there are still some problems for the posture data to be applied directly to the human model due to the lack of fitness because such studies were not carried out under the conditions for the human model application. In the traditional researches, the joint angles were evaluated by the categorized data, which are not appropriate for the human model application because it is so extensive that it can not explain the posture evaluation data in detail. And the human models require whole-body posture evaluation data rather than joint evaluation data. In this study a postural evaluation function was developed not by category data but by the concept of the loss function in quality engineering. The loss was defined as the discomfort in driver's posture and measured by the magnitude estimation technique in the experiment using a seating buck. Four loss functions for the each joint - knee, hip, shoulder, and elbow were developed and a whole-body postural evaluation function was constructed by the regression analysis using these loss functions as independent factors. The developed postural evaluation function shows a good prediction power for the driver's posture discomfort in validation test. It is expected that the driver's postural evaluation function based on the loss function can be used in the human model application to the vehicle design process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.