• 제목/요약/키워드: postural stability

검색결과 180건 처리시간 0.025초

외측측부인대 손상을 동반한 발목염좌 환자에서 균형 훈련기를 이용한 훈련이 통증 및 균형능력에 미치는 영향 (Effect of Rehabilitation with Balance Trainer Machine on Pain and Postural Stability after Ankle Sprain)

  • 정상모;이재남;정영준;신영일
    • 대한정형도수물리치료학회지
    • /
    • 제22권2호
    • /
    • pp.57-63
    • /
    • 2016
  • Background: Instability due to ankle sprains will be accompanied by a problem of balance and pain change. Balance trainer is used to improve the ankle strength and balance ability. The purpose of this study was to evaluate the change of pain and postural balance ability in ankle joint after balance trainer application in patients with ankle sprain and instability. Methods: Twenty patients in K hospital in Incheon were enrolled. Balance trainer was applied to 10 subjects in the experimental group and 10 subjects in the Balance cushion under the same conditions as the experimental group to compare the pain and balance ability. Results: In the experimental group, there was a significant difference in the change of the pain variation. In the postural balance ability comparison, there was a significant difference in total and post - posterior comparison compared to the control, but there was no significant difference in the postural balance ability comparison. Conclusion: Pain and postural balance ability of patients with instability due to ankle sprain improved the pain and balance ability of the Balance trainer group compared to the Balance cushion training group.

  • PDF

Effects of virtual reality-based core stabilization exercise on upper extremity function, postural control, and depression in persons with stroke

  • Kim, Jee-Won;Kim, Jung-Hee;Lee, Byoung-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권3호
    • /
    • pp.131-139
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the effect of virtual reality (VR)-based core stabilization exercise on upper extremity function, postural control, and depression among persons with stroke with hemiplegia. Design: Randomized controlled trial. Methods: This study was conducted with the inclusion of 24 participants and were randomly assigned to either the VR-based trunk stability exercise group (n=12) or control group (n=12). The VR-based trunk stability exercise group performed core stabilization exercises in a VR environment for 30 minutes. Meanwhile, the control group conducted general core stabilization exercises for 30 minutes. The participants trained 3 times a week for 4 weeks. The manual functional test (MFT), Box and Block Test (BBT), Berg Balance Scale (BBS), Trunk Impairment Scale (TIS), the Geriatric Depression Scale (GDS) were used to assess all participants before and after the intervention. Results: The VR-based core stabilization exercise group had a significant improvement in upper extremity function (MFT, BBT) and postural control (BBS) compared with the control group (p<0.05). The VR-based core stabilization exercise showed a significant difference after intervention in the TIS and GDS scores (p<0.05), but they did not significantly differ between the two groups. Conclusions: The result showed that VR-based core stabilization exercise can be effective in improving upper extremity function and postural control among patients with stroke more than the sole application of general physical therapy.

기능적 발목 불안정성을 가진 선수에게 발목 테이핑이 점프 후 착지 시 발목 각속도, 지면반력과 자세 안정성에 미치는 영향 (The Effects of Ankle Taping on Ankle Angular Velocity, Ground Reaction Force and Postural Stability during Jump Landing on Athlete with Functional Ankle Instability)

  • 김경훈;조준행
    • 한국운동역학회지
    • /
    • 제19권3호
    • /
    • pp.519-528
    • /
    • 2009
  • 상해 예방을 위해 이용하는 테이핑의 효과는 이미 선행연구들에서 이해할만하게 이야기 되어져 왔지만, 기능적 발목 불안정성을 가진 대상자에게 동적 임무를 가지고 지면반력과 안정성을 분석한 연구는 거의 없다. 본 연구는 발목 불안정성을 가진 선수들을 대상으로 점프 후 착지 시 지면반력 변인과 안정성에 미치는 영향을 알아보는데 있다. 이 실험을 위하여 기능적 발목 불안정성을 가진 14명의 선수가 참가하였고 동작분석과 지면반력 값을 산출하기 위해 적외선 카메라 8대(Vicon MX-F20, Oxford Metric Ltd, Oxford, UK)로 구성된 동작분석시스템(Vicon Motion Systems)과 지면반력기를 사용하였다. 본 연구 결과 발목 불안정성이 있는 선수에게 테이핑의 적용은 착지 시 배측굴곡 각속도, 내번 각속도, 최대 수직지면반력을 감소시켰으며, 안정성과 관련된 변인인 A-P cop, M-L cop에서 안정성을 향상시켰다. 임상에서 발목 불안정성이 있는 선수들에게 상해 예방을 위한 하나의 방법으로 테이핑의 사용을 권장해도 될 것으로 사료된다.

정적 서기 동안 한쪽 또는 양쪽 발목관절 고정이 자세균형에 미치는 영향 (Effects of Unilateral or Bilateral Ankle Immobilization on Postural Balance During Quiet Standing)

  • 한진태
    • 대한물리치료과학회지
    • /
    • 제29권3호
    • /
    • pp.56-62
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effects of ankle joint immobilization on postural balance during quiet standing. Design: Cross-sectional study Methods: Twenty-seven healthy subject participated in this study. The subjects performed to stand quietly for 30s in eyes open on the platform with three different conditions. The sway length, sway area and sway velocity of center of gravity (COG) displacement and limit of stability (LOS) was measured using the balance platform. Repeated measured ANOVA was used to compare the postural balance parameters depending on three different ankle immobilized conditions. Results: Sway length, sway area and sway velocity of the COG displacement with bilateral ankle immobilized condition was significantly increased compared to those of the other two conditions(p<0.05). All directions of LOS with bilateral ankle immobilized condition were significantly decreased compared to those of the other two conditions. Conclusion: These findings suggest that ankle joint immobilization could be one of the factors that interfere the maintaining of the postural balance in quiet standing.

Analysis of the Dynamic Balance Recovery Ability by External Perturbation in the Elderly

  • Park, Da Won;Koh, Kyung;Park, Yang Sun;Shim, Jae Kun
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.205-210
    • /
    • 2017
  • Objective: The aim of the study was to investigate the age-related ability of dynamic balance recovery through perturbation response during standing. Method: Six older and 6 younger adults participated in this study. External perturbation during standing as pulling force applied at the pelvic level in the anterior direction was provided to the subject. The margin of stability was quantified as a measure of postural stability or dynamic balance recovery, and using principal component analysis (PCA), the regularity of the margin of stability (MoS) was calculated. Results: Our results showed that in the older adult group, 60.99% and 28.63% of the total variance were captured using the first and second principal components (PCs), respectively, and in the younger adult group, 81.95% and 10.71% of the total variance were captured using the first and second PCs, respectively. Conclusion: Ninety percent of the total variance captured using the first two PCs indicates that the older adults had decreased regularity of the MoS than the younger adults. Thus, the results of the present study suggest that aging is associated with non-regularity of dynamic postural stability.

Effect on the Limit of Stability of the Lowered Center of Mass With a Weight Belt

  • Phan, Jimmy;Wakumoto, Kaylen;Chen, Jeffrey;Choi, Woochol Joseph
    • 한국전문물리치료학회지
    • /
    • 제27권2호
    • /
    • pp.155-161
    • /
    • 2020
  • Background: The consequences of falls are often debilitating, and prevention is important. In theory, the lower the center of mass (COM), the greater postural stability during standing, and a weight belt at the waist level may help to lower the COM and improve the standing balance. Objects: We examined how the limit of stability (LOS) was affected by the lowered center of mass with the weight belt. Methods: Twenty healthy individuals participated in the LOS test. After calculating each participant's COM, a weight belt was fastened ten centimeters below the COM. Trials were acquired with five weight belt conditions: 0%, 2%, 4%, 6%, and 8% of body weight. Outcome measures included reaction time, movement velocity, endpoint excursion, maximum excursion, and directional control in 4 cardinal moving directions. Results: None of our outcome variables were associated with a weight belt (p > 0.075), but all of them were associated with moving direction (p < 0.01). On average, movement velocity of the COM and maximum excursion were 31% and 18% greater, respectively, in mediolateral than anteroposterior direction (5.4°/s vs. 4.1°/s; 97.5% vs. 82.6%). Conclusion: Our results suggest that postural stability was not affected by the weight-induced lowered COM, informing the development and improvement of balance training strategies.

가상현실 프로그램이 만성 뇌졸중 환자의 선자세 균형에 미치는 영향 (Effects of Virtual Reality Program on Standing Balance in Chronic Stroke Patients)

  • 김중휘;김중선
    • The Journal of Korean Physical Therapy
    • /
    • 제17권3호
    • /
    • pp.351-367
    • /
    • 2005
  • The purpose of this study was to identity effects of virtual reality(VR) program related to standing postural control on balance, gait and brain activation patterns in chronic hemiplegic stroke patients. Subjects were assigned randomly to either VR group (n=12) or the control group (n=12) when the study began. Both groups received conventional physical therapy for 2 to 3 times per week. In addition to conventional physical therapies, VR group trained 3 types of virtual reality programs using IREX for standing postural control during 4 weeks (4 times/week, 30 minutes/time). Subjects were assessed for static and dynamic balance parameters using BPM, functional balance using Berg Balance Scale related to movement of paretic lower limb before and after 4 weeks of virtual reality training. The results of this study were as follows. 1. Following VR training, VR group demonstrated the marked improvement on dynamic mean balance, anteroposterior limits of stability (AP angle) and mediolateral limits of stability (ML angle). 2. Following VR training, both groups scored higher on Berg Balance Scale. However, a comparison of mean change revealed differences between groups. In conclusion, these data suggest that the postural control training using VR programs improve dynamic and functional balance performance in chronic hemiplegic stroke patients.

  • PDF

Reliability and Validity of the Postural Balance Application Program Using the Movement Accelerometer Principles in Healthy Young Adults

  • Park, Seong-Doo;Kim, Ji-Seon;Kim, Suhn-Yeop
    • 한국전문물리치료학회지
    • /
    • 제20권2호
    • /
    • pp.52-59
    • /
    • 2013
  • The purpose of this study was to determine the reliability and validity of the postural balance program which uses the movement accelerating field principles of posture balance training and evaluation equipment and smartphone movement accelerometer program (SMAP) in healthy young adults. A total of 34 people were appointed as the subject among the healthy young adults. By using Biodex stability system (BSS) and SMAP on the subject, the posture balance capability was evaluated. For the test-retest reliability, SMAP showed the intra-class correlation (ICC: .62~.91) and standard error measurement (SEM: .01~.08). BSS showed the moderate to high reliability of ICC (.88~.93) and SEM (.02~.20). In the reliability of inter-rater, ICC (.59~.73) as to SMAP, showed the reliability of moderate in eyes open stability all (EOSA), eyes open stability anterior posterior (EOSAP), eyes open stability medial lateral (EOSML) and eyes open dinamic all (EODA), eyes open danamic anterior posterior (EODAP), and eyes open danamic medial lateral (EODML). However, ICC showed reliability which was as low as .59 less than in other movements. In addition, BSS showed the reliability of high as ICC (.70~.75). It showed reliability which was as low as ICC (.59 less than) in other movements. In correlation to the balance by attitudes between SMAP and BSS, EOSML (r=.62), EODA (r=.75), EODML (r=.72), ECDAP (r=.64), and ECDML (r=.69) shown differ significantly (p<.05). However, the correlation noted in other movements did not differ significantly. Therefore, SMAP and BSS can be usefully used in the posture balance assessment of the static and dynamic condition with eyes opened and closed.

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.

불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향 (The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture)

  • 은혜인;유미;김동욱;권대규;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권5호
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.