• 제목/요약/키워드: postharvest pathology

검색결과 51건 처리시간 0.032초

참다래 저장병 방제 약제 선발 (Screening of Fungicies for the Control of Postharvest Fruit Rots of Kiwifruit)

  • 고영진;이재군;허재선;박동만;정재성;유용만
    • 식물병연구
    • /
    • 제9권3호
    • /
    • pp.170-173
    • /
    • 2003
  • 포장에서 참다래 저장병균들에 의한 감염을 최소화할 수 있는 화학적 방제체계를 확립하기 위하여, 국내에서 참다래 저장병 약제로 등록된 베노밀 수화제와 지오판 수화제 등 2가지 약제를 대체할 수 있는 새로운 약제를 선발하기 위하여 본 연구를 실시하였다. 시험에 사용한 8가지 약제 중에서 후루실라졸 수화제, 이프로 수화제 및 터부코나졸 수화제는 모두 실내 시험을 통하여 국내에서 참다래 주요 저장병원균으로 밝혀진 Botryosphaeria dothidea, Diaporthe actinideae 및 Botrytis cinerea에 대해 탁월한 균사생장 저지효과를 나타내었을 뿐만 아니라 포장 시험에서도 베노밀 수화제와 지오판 수화제와 비등하거나 우수한 방제 효과를 나타내었으므로 장차 참다래 저장병 장제약제로 사용할 수 있을 것으로 기대된다.

Effect of Thymol and Linalool Fumigation on Postharvest Diseases of Table Grapes

  • Shin, Mi Ho;Kim, Jin-Hee;Choi, Hyo-Won;Keum, Yoong Soo;Chun, Se Chul
    • Mycobiology
    • /
    • 제42권3호
    • /
    • pp.262-268
    • /
    • 2014
  • Several postharvest diseases of table grapes (Vitis vinifera) occur during storage, and gray mold rot is a particularly severe disease because the causal agent, Botrytis cinerea, grows at temperatures as low as $0^{\circ}C$. Other postharvest diseases, such as those caused by Penicillium spp. and Aspergillus spp., also often lead to deterioration in the quality of table grapes after harvest. The use of plant essential oils such as thymol and linalool, to reduce postharvest diseases in several kinds of fruits, including table grapes and oranges, has received much attention in European countries. However, to the best of our knowledge there has been no report of the use of thymol fumigation to control gray mold in table grapes in Korea. Thymol ($30{\mu}g/mL$) and linalool ($120{\mu}g/mL$) significantly inhibited mycelial growth and conidia germination of B. cinerea. The occurrence rate of gray mold rot of B. cinerea and other unknown fungi was significantly reduced by fumigation with $30{\mu}g/mL$ thymol in several table grape cultivars, such as Campbell early, Muscat Bailey A, Sheridan, and Geobong. In this study, fumigation with $30{\mu}g/mL$ thymol, had no influence on the sugar content and hardness of grapes, but reduced fungal infection significantly. This suggests that $30{\mu}g/mL$ thymol could be utilized to reduce deterioration of grapes due to gray mold and other fungal infections during long-term storage.

Suppression of Ripe Rot on 'Zesy002' Kiwifruit with Commercial Agrochemicals

  • Shin, Yong Ho;Ledesma, Magda;Whitman, Sonia;Tyson, Joy;Zange, Birgit;Kim, Ki Deok;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.347-355
    • /
    • 2021
  • Ripe rot caused by Botryosphaeria dothidea is one of the serious diseases of postharvest kiwifruit. In order to control ripe rot on Actinidia chinensis cultivar 'Zesy002', several commercial agrofungicides were selected by an antifungal test on an artificial medium. Furthermore, disease suppression by the selected fungicides was evaluated on the kiwifruit by inoculation with a conidial suspension of B. dothidea. On the artificial media containing boscalid + fludioxonil was shown to be the most effective antifungal activity. However, in the bio-test pyraclostrobin + boscalid and iminoctadinetris were the most effective agrochemicals on the fruit. On the other hand, the infection structures of B. dothidea on kiwifruit treated with pyraclostrobin + boscalid were observed with a fluorescent microscope. Most of the fungal conidia had not germinated on the kiwifruit treated with the agrochemicals whereas on the untreated fruit the fungal conidia had mostly germinated. Electron microscopy of the fine structures showed morphological changes to the conidia and branch of hyphae on the kiwifruit pre-treated with pyraclostrobin + boscalid, indicating its suppression effect on fungal growth. Based on this observation, it is suggested that ripe rot by B. dothidea may be suppressed through the inhibition of conidial germination on the kiwifruit treated with the agrochemicals.

Rapid and Sensitive Detection of the Causal Agents of Postharvest Kiwifruit Rot, Botryosphaeria dothidea and Diaporthe eres, Using a Recombinase Polymerase Amplification Assay

  • Gi-Gyeong Park;Wonyong Kim;Kwang-Yeol Yang
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.522-527
    • /
    • 2023
  • The occurrence of postharvest kiwifruit rot has caused great economic losses in major kiwifruit-producing countries. Several pathogens are involved in kiwifruit rot, notably Botryosphaeria dothidea, and Diaporthe species. In this study, a recombinase polymerase amplification (RPA) assay was developed for the rapid and sensitive detection of the pathogens responsible for posing significant threats to the kiwifruit industries. The RPA primer pairs tested in this study were highly specific for detection of B. dothidea and D. eres. The detection limits of our RPA assays were approximately two picograms of fungal genomic DNA. The optimal conditions for the RPA assays were determined to be at a temperature of 39℃ maintained for a minimum duration of 5 min. We were able to detect the pathogens from kiwifruit samples inoculated with a very small number of conidia. The RPA assays enabled specific, sensitive, and rapid detection of B. dothidea and D. eres, the primary pathogens responsible for kiwifruit rots in South Korea.

Postharvest Disease Control of Colletotrichum gloeosporioides and Penicillium expansum on Stored Apples by Gamma Irradiation Combined with Fumigation

  • Cheon, Wonsu;Kim, Young Soo;Balaraju, Kotnala;Kim, Bong-Su;Lee, Byeong-Ho;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • 제32권5호
    • /
    • pp.460-468
    • /
    • 2016
  • To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions.

Enhancing the Efficacy of Burkholderia cepacia B23 with Calcium Chloride and Chitosan to Control Anthracnose of Papaya During Storage

  • Rahman, M.A.;Mahmud, T.M.M.;Kadir, J.;Rahman, R. Abdul;Begum, M.M.
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.361-368
    • /
    • 2009
  • The efficacy of the combination of Burkholderia cepacia B23 with 0.75% chitosan and 3% calcium chloride ($CaCl_2$) as a biocontrol treatment of anthracnose disease of papaya caused by Colletotrichum gloeosporioides, was evaluated during storage. The growth of B. cepacia B23 in papaya wounds and on fruit surfaces was not affected in presence of chitosan and $CaCl_2$ or combination throughout the storage period. The combination of B. cepacia B23 with chitosan-$CaCl_2$ was more effective in controlling the disease than either B. cepacia B23 or chitosan or other combination treatments both in inoculated and naturally infected fruits. Combining B. cepacia B23 with chitosan-$CaCl_2$ gave the complete control of anthracnose infection in artificially inoculated fruits stored at $14^{\circ}C$ and 95% RH for 18 days, which was similar to that obtained with fungicide $benocide^{(R)}$. Moreover, this combination offered a greater control by reducing 99% disease severity in naturally infected fruits at the end of 14 days storage at $14^{\circ}C$ and 95% RH and six days post ripening at $28\pm2^{\circ}C$, which was superior to that found with $benocide^{(R)}$ or other treatments tested. Thus, postharvest application of B. cepacia B23 with chitosan-$CaCl_2$ as enhancers represents a promising alternative to synthetic fungicides for the control of anthracnose in papaya during storage.

우리나라 참다래 저장병 발병율과 병원균 (Incidences and Causal Agents of Postharvest Fruit Rots in Kiwifruits in Korea)

  • 고영진;이재군;허재선;정재성
    • 식물병연구
    • /
    • 제9권4호
    • /
    • pp.196-200
    • /
    • 2003
  • 우리나라 참다래 주요 재배지인 전남과 경남 그리고 제주지역의 16개 포장에서 임의로 수집한 1600개 참다래 과실의 평균 저장병 발병율은 32.0%로 나타났지만, 저장병 발병율은 수확한 과수원에 따라서 5%에서 68%까지 다양했다. 저장병에 걸린 참다래 과실 중에서 15.4%가 외부 병징, 68.4%가 내부 병징을 나타내었고, 외부와 내부 모두에 병징을 나타내는 것은 16.2%였다. 저장병에 걸린 과실들에서 병원균의 검출율은 분리한 지역에 따라 차이가 있었으며, Botryosphaeria dothidea가 83.3%, Diaporthe actinidiae는 11.9%, Botrytis cinerea가 1.4%의 검출율을 보여 주요 저장병원균으로 밝혀졌다. 참다래 주요 저장병원균으로 확인된 B. dothidea와 D. actinidiae에 의해 발생하는 참다래 주요 저장병을 과실에 나타난 각 병징과 각 병원균들의 특성을 고려하여 과숙썩음병과 과실꼭지썩음병으로 각각 구분하여 명명하고자 한다.

Occurrence and Biological Control of Postharvest Decay in Onion Caused by Fungi

  • Lee, Joon-Taek;Bae, Dong-Won;Park, Seun-Hee;Shim, Chang-Ki;Kwak, Youn-Sig;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • 제17권3호
    • /
    • pp.141-148
    • /
    • 2001
  • Postharvest decay of onion bulbs was examined by inspecting the commercial packages in the market or in storage. Bulb rot incidence was unexpectedly high, and onion bulbs with 1st quality grade were rotten most severely by 51%, followed by 32% for 2nd and 21% for 3rd grades. This indicates that larger bulbs had higher incidences of bulb rots. Major pathogens associated with basal and neck rots were Fusarium oxysporum and Aspergillus sp. or Botrytis allii, respectively, of which basal rot was most prevalent and damaging during storage. Among the epiphytic microorgani는 from onion plants, several Bacillus and Paenibacillus spp. and previously selected Pseudomonas putida and Trichoderma harzianum had inhibitory efficacy against bulb rot pathogens. Among these B. amyloliquefaciens BL-3, Paenibacillus polymyxa BL-4, and P. putida Cha 94 were highly inhibitory to conidial germination of F. oxysporum and B. allii. P. putida Cha 94, B. amyloliquefaciens BL-3, P. polymyxa BL-4, and T. harzianum TM were applied in the rhizoplane of onion at transplanting. Initially antagonist populations decreased rapidly during the first one month. However, among these antagonists, rhizoplane population densities of BL-3, Cha 94, and TM were consistently high thereafter, maintaining about 10$^4$-10$^{5}$ cells or spores per gram of onion root up to harvest time. The other bacterial antagonist BL-4 survived only for two months. TM was the most effective biocontrol agent against basal rot, with the number of rotten bulbs recorded at 4%, while that of the control was 16%. Cha 94 was effective for the first 20 days, but basal rot increased thereafter and had about the same control efficacy as that of BL-3 and BL-4. When the antagonists were applied to the topping areas of onion bulbs at harvest, TM was the most effective in protecting the stored onion bulbs from neck rotting. The second effective antagonist was BL-3. TM and BL-3 completely suppressed the neck rot in another test, suggesting that biocontrol of postharvest decay of onion using these microorganisms either at the time of transplanting or at harvesting may be promising.

  • PDF