• Title/Summary/Keyword: postharvest

Search Result 1,280, Processing Time 0.045 seconds

Auto-dump Design of Postharvest Bulk Handling Machinery System for Onions

  • Park, Jongmin;Choi, Wonsik;Kim, Ghiseok;Kim, Jongsoon
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Postharvest handling of onions (harvesting, cleaning, grading, cooling, storing, and transport) should be performed continually to reduce costs and improve quality. The purpose of this study is to a) determine the design parameters and operating conditions of anion auto-dumping that constitutes a key component of the postharvest bulk handling machinery system, and b) to perform a performance test with the auto-dump prototype system. Methods: Kinematic analyses and computer simulations of the auto-dump mechanism were applied to analyze the operating conditions and design parameters. Results: The optimum working condition for the auto-dump was determined from kinetic analyses. In addition, the interaction between the velocity of the hydraulic cylinder and the angular velocity of the auto-dump were analyzed in order to control the bulk handling machinery system. The acting forces and optimum operating conditions of the hydraulic cylinder were determined by analyzing the forces related to the mass of inertia of the auto-dump assembly during rotation. The method of controlling the feeding rate of onions in terms of the uniformity of the stacking pattern and the control of the entire system was better than the two-stage method of controlling the rotational speed of the auto-dump. Based on the performance test with the prototype for the auto-dump, the stacking pattern and rigidity of the system were analyzed. Conclusions: These results would be of great importance in the postharvest bulk handling machinery system for onions.

Effect of Preservative Solutions on Postharvest Vase Life of Hydrangea macrophylla 'Verena Green' (보존용액이 절화 수국 '발레나 그린'의 관상기간 연장에 미치는 영향)

  • Ji-Weon Choi;Haejo Yang;Sooyeon Lim;Il Sheob Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.59-59
    • /
    • 2020
  • 수국 '베레나 그린'의 줄기하단의 엽을 제거하고 5엽 상태에서 수돗물과 0.1% 크리잘 RVB에 각각 담가 4℃에서 24시간 물올림을 하고 물올림을 하고, 줄기를 60~70cm 길이로 끝을 대각선으로 절단하여 물올림용액을 채운 물 대롱을 끼운 다음 꽃을 보호하기 위한 비닐 슬리브를 씌워 유통용 종이상자에 담아 5±1℃ 냉장차로 국립원예특작과학원으로 운반하였으며, 절화수명 및 관련 특성분석을 위해 평가실로 옮기기 전까지 유통용 종이상자에 담긴 상태로 저온저장고(5±1℃)에 보관하였다. 보존용액에 따른 절화특성 조사를 위해 절화를 평가실에 전시하기 전에 절화의 줄기길이를 40cm로 맞춰 절단한 뒤에 보존용액을 800 mL 채운 플라스틱 화병에 꽃아 절화 화관끼리 서로 닿지 않도록 배치하였으며 22±2℃ 실내에서 절화수명을 조사하였다. 보존용액으로 4% 차아염소산나트륨 용액, 1% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid로 이루어진 용액(HQ) 그리고 시중에서 수국 절화 보존제로 판매되는 크리잘 프로 II, III와 크리잘 clear 0.5% 용액을 사용하였다. 수돗물에 물올림하였을 때 보존용액인 0.5% 크리잘 프로 II에서는 33.8일, 0.5% 크리잘 프로 III에서는 27.7~33.5일, 크리잘 클리어는 33.7일, 차아염소산나트륨과 수돗물은 각각 26.2, 28.8일이었고, HQ 용액은 49.0일로 크리잘보다 15일, 수돗물보다 20일 절화수명이 연장되었다. 수국 '베레나 그린'의 보존용액으로 1% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid를 사용하는 것이 관상기간을 연장하는 데 효과적이었다.

  • PDF

The effect of storage temperature on antioxidant capacity and storability of paprika

  • Me-Hea Park;Hyang Lan Eum;Pue Hee Park;Dong Ryeol Baek;Siva Kumar Malka
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • Storage temperature profoundly influences the storability of paprika (Capsicum annuum L.). However, the impact of storage temperature on storability and its association with the antioxidant activity of paprika are poorly understood. In this study, we evaluated the storage attributes, activity, and gene expression levels of antioxidant enzymes in paprika stored at 4, 10, and 20℃ for 14 d and then at 20℃ for an additional 5 d (14+5 d; retail conditions). Storage at 10℃ effectively mitigated pitting, stalk browning, shriveling, and decay while significantly enhancing the marketability of paprika. The fruits stored at 4℃ were prone to pitting, whereas those stored at 20℃ were sensitive to stalk browning and decay. Moreover, paprika stored at 10℃ exhibited higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) activity and total phenolic content than those stored at 4 and 20℃, indicating improved antioxidant activity. Additionally, storage at 10℃ upregulated the expression levels of the antioxidant genes, catalase and peroxidase, suggesting the mechanism underlying the quality enhancement of paprika. Our findings suggest that paprika storage at 10℃ alleviates chilling injuries, preserves the quality and marketability, and enhances the antioxidant potential of paprika. These findings provide insights into how temperature influences the quality and minimizes post-harvest losses during the storage and distribution of paprika.

Control of postharvest fungal spoilage of kiwifruit with TiO$_2$ photocatalytic ozonation.

  • Hur, Jae-Seoun;Oh, Soon-Ok;Kim, Minjin;Jung, Jae-Sung;Koh, Young-Jin
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.87.3-88
    • /
    • 2003
  • TiO$_2$photocatalytic ozonation was attempted to disinfect fungal pathogens causing postharvest spoilage of kiwifruits and to decompose fungicide residuals on kiwifruits. TiO$_2$Photocatalytic ozonation process synergistically degraded organic compound and inhibited conidial germination of the fungal pathogen compared to single treatment of ozonation or photocatalysis. The efficient control of fungal spoilage and degradation of residual fungicide on kiwifruits indicate that TiO$_2$photocatalytic ozonation is a very attractive method for postharvest disease control of kiwifruits as an alternative to fungicides application.

  • PDF

Towards the Development of Long-Life Crops by Genetic Engineering of Ethylene Sensitivity

  • Ezura, Hiroshi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2000
  • Food production is a major role of agriculture. It has been projected that the world population continues to increase by the middle of the 21st century, and the population growth results in raising a serious problem of food shortage. Thus we have to increase food as possible. A considerable amount of crops have been abandoned due to short-life after postharvest. Ethylene is a factor responsible for the postharvest loss in crops, especially horticultural crops. If we can reduce ethylene production or sensitivity by genetic engineering, we can develop, so called,“long-life crop”conferring long postharvest lives. During last two decades, intensive research for molecular dissection of ethylene biosynthesis has been carried out, and the researchers have succeeded in engineering ethylene productivity in some crops. On the other hand, after the successful isolation of Arabidopsis ethylene receptor gene ETR1, the homolog genes have been isolated in various plant species. Currently the characterization of these genes and alteration of ethylene sensitivity using the genes are in progress. This review summarizes current progress in the analysis of these genes, and discusses genetic engineering of ethylene sensitivity using these genes.

  • PDF

Effect of pepper tree (Schinus molle) essential oil-loaded chitosan bio-nanocomposites on postharvest control of Colletotrichum gloeosporioides and quality evaluations in avocado (Persea americana) cv. Hass

  • Chavez-Magdaleno, Mireya Esbeiddy;Gonzalez-Estrada, Ramses Ramon;Ramos-Guerrero, Anelsy;Plascencia-Jatomea, Maribel;Gutierrez-Martinez, Porfirio
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1871-1875
    • /
    • 2018
  • Preventive and curative activity of postharvest treatments with chitosan nanoparticles (CS) and chitosan biocomposites loaded with pepper tree essential oil (CS-PEO) against anthracnose were evaluated on Avocado (Persea americana) cv. Hass artificially inoculated in rind wounds. After 10 days of storage significant preventive and curative activity against Colletotrichum gloeosporioides was observed with the absence of internal damage by applying CS and CS-PEO. Quality parameters like water losses and firmness changes were assessed on fruit treated. CS and CS-PEO were effective to reduce water losses and firmness losses.

Effect of Postharvest Treatments on Storage Quality of Buckwheat Sprouts (메밀 새싹채소의 저장품질에 대한 수확 후 처리공정 효과)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.98-104
    • /
    • 2011
  • The storage quality of fresh buckwheat sprouts, as influenced by pretreatment and packaging within processing steps, was investigated to establish appropriate postharvest handling treatment for the commodity. After harvest, the sprouts were dipped in chlorine water (100 ppm), rinsed twice with clean water, pre-cooled with iced water, de-watered, and packed in plastic trays. Sprout samples taken from each processing step were stored at $5^{\circ}C$ for 6 days to measure quality attributes. Viable cell counts of mesophilic aerobes and coliform bacteria were lower by about 1 log scale in the postharvest treated samples compared to an untreated control, although the initial microbial reduction due to the postharvest treatments was offset by cell growth during storage. All sprout samples showed a decrease of fresh weight by approximately 4% after 6 days of storage. However, moisture and soluble solid contents were maintained at the initial levels of the sprouts. No significant difference in surface color was observed among sample treatments. For sensory properties including discoloration, wilting, decay, and visual quality, there were no significant differences among sample treatments. The present results suggest that proper postharvest processing treatments can exert positive effects on extending the shelf-life of fresh buckwheat sprout.

The effects of CO2 treatment for freshness extension of Pleurotus eryngii (큰느타리버섯의 신선도 유지기간 연장을 위한 CO2 처리 효과)

  • Lee, Ji-Hyun;Choi, Ji-Weon;Hong, Yoon-Pyo;Choi, Hyun-Jin;Kim, Ji-Gang
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2014
  • King oyster mushrooms(Pleurotus eryngii) are the second biggest mushroom for exporting in Korea but their browning and soft rot is the main factors of claim during long distance transportation. Fresh king oyster mushrooms were treated with $CO_2$ at 30, 50% for 3 hours at $5^{\circ}C$ prior to storage at $20^{\circ}C$ and $5^{\circ}C$. There was no difference on respiration rate after $CO_2$ treatment. However exposure to $CO_2$ for 3h prior to MA packing maintained the firmness and delayed color(hunter L and b value) change of mushrooms during storage. Especially an incubation in high $CO_2$ at 30% significantly reduced soft rot and browning symptoms resulting in one week extension of shelf-life during storage at $5^{\circ}C$ compared to control and 50% $CO_2$ treatment.

Quality evaluations of bell pepper in cold system combined with TEM (thermoelectric materials) and PCM (phase change material) (PCM을 장착한 열전소자 냉각시스템의 저장 중 피망의 품질 평가)

  • Sung, Jung-Min;Kim, So-Hee;Kim, Byeong-Sam;Kim, Jong-Hoon;Kim, Ji-Young;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at $5^{\circ}C$). The result of color value, on 21 day, ${\Delta}E$ value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.

Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 수확후 관리기술 최근 연구 동향)

  • Choi, Ji-Weon;Yoon, YoeJin;Lee, Ji-Hyun;Kim, Chang-Kug;Hong, Yoon-Pyo;Shin, Il Sheob
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • The king oyster mushroom (Pleurotus eryngii) is widely consumed because of its flavor, texture, and its functional properties such as antioxidant activity and prebiotic effects. However, long-term product storage and transportation (e.g., export) are difficult because of its limited durability. The shelf-life of king oyster mushroom is affected by environmental factors such as temperature, humidity, gas composition, and ventilation, which may affect sensory characteristics including respiration rate, texture, moisture, flavor, color, and pH. The major problems regarding storage of mushrooms are browning, flavor changes, and softening. To address these problems, novel preservation techniques were developed, and more durable variants were bred. Different drying methods, gamma irradiation, chitosan coating, modified atmosphere (MA) packaging, and controlled atmosphere (CA) storage were evaluated in order to extend the shelf-life of king oyster mushrooms. Freeze drying showed better results for the preservation of mushrooms than other drying methods. Irradiation with 1 kGy was more effective for extending mushroom shelf-life than higher doses. The preservative performance of chitosan-based films was improved by combining the compound with other hydrocolloids, such as oil, protocatechuic acid, and wax. The CA storage conditions recommended for king oyster mushrooms are 5kPa $O_2$ and 10 to 15kPa $CO_2$ at temperatures below $10^{\circ}C$. Active MA packaging with microperforated PP film was also effective for maintaining quality during storage.