Communications for Statistical Applications and Methods
/
v.16
no.6
/
pp.1005-1012
/
2009
The area under the curve(AUC) is commonly used as a measure of the receiver operating characteristic(ROC) curve which displays the performance of a set of binary classifiers for all feasible ratios of the costs associated with true positive rate(TPR) and false positive rate(FPR). In the bipartite ranking problem where one has to compare two different observations and decide which one is "better", the AUC measures the quantity that ranking score of a randomly chosen sample in one class is larger than that of a randomly chosen sample in the other class and hence, the function which maximizes an AUC of bipartite ranking problem is different to the function which maximizes (minimizes) accuracy (misclassification error rate) of binary classification problem. In this paper, we develop a way to construct the unified framework for AUC maximizer including support vector machines based on maximizing large margin and logistic regression based on estimating posterior probability. Moreover, we develop an efficient algorithm for the proposed unified framework. Numerical results show that the propose unified framework can treat various methodologies successfully.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.1752-1756
/
2007
정교한 강우-유출 모의를 위해서는 적절한 매개변수의 추정이 필수적이며, 매개변수 추정 방법은 시행착오(trial and error)에 의한 수동보정법과 최적화방법을 사용한 자동보정법으로 구분할 수 있다. 모형의 매개변수의 수가 많은 경우 수동보정법에 의한 매개변수 추정은 매우 어렵다. 자동 보정법에 사용되는 최적화방법은 Rosenbrock 알고리즘, patten search, 컴플렉스(complex) 방법, Powell 방법 등과 같은 지역최적화 방법과 전역최적화 방법으로 나눌 수 있다. 그러나 기존 방법론들은 매개변수의 최적화를 추적하기 위한 알고리즘이 대부분이며 이들 매개변수에 관련된 불확실성을 평가하는데는 미흡한 단접이 있다. 이러한 점에서 본 연구에서는 강우-유출모형의 매개변수 추정에 있어서 불확실성을 평가할 수 있는 새로운 방법론을 검토하고자 한다. 매개변수와 관련된 불확실성을 평가하기 위한 방법은 여러 가지가 있으나 통계적으로 매우 우수한 능력을 보이는 Hierarchical Bayesian 알고리즘을 Probability-Distributed 강우-유출 모형에 적용하였다. 본 방법론은 최적화와 동시에 각 매개변수에 관련된 사후분포(posterior distribution)의 추정이 가능하므로 모형이 갖는 불확실성을 효과적으로 평가할 수 있다. 따라서, 수자원 관리에 있어서 불확실성을 고려할 수 있으므로 보다 수리수문학적 위험도를 저감할 수 있을 것으로 판단된다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.4
s.304
/
pp.39-48
/
2005
This paper proposes novel texture segmentation method using Bayesian estimation method and neural networks. We use multi-scale wavelet coefficients and the context information of neighboring wavelets coefficients as the input of networks. The output of neural networks is modeled as a posterior probability. The context information is obtained by HMT(Hidden Markov Tree) model. This proposed segmentation method shows better performance than ML(Maximum Likelihood) segmentation using HMT model. And post-processed texture segmentation results as using multi-scale Bayesian image segmentation technique called HMTseg in each segmentation by HMT and the proposed method also show that the proposed method is superior to the method using HMT.
Proceedings of the Korea Water Resources Association Conference
/
1998.05b
/
pp.7-13
/
1998
A methodology to analyze and quantify regional meteorological drough based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network ISANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought serverities. For example, the proposed methodology has been applied to analyze the regional drought of South Korea. This is a new method to classify and quantify the spatial or regional drought based on neural network pattern recognition technique and the results show that it may be apprepriate and valuable to analyze the spatial drought.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5819-5840
/
2018
Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with various attacks launched by malicious nodes, which include network eavesdropping, channel interference and data tampering. The existing intrusion detection algorithm does not take into consideration the resource constraints of cluster heads and sensor nodes. Due to application requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal defense strategy is primarily introduced. Given the flexibility that wireless communication provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over time. Instead, malicious nodes can dynamically update the attack strategy in response to the IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical analysis, the optimal behaviors of rational attackers and defenders are derived and calculated accurately. The numerical experimental results validate the effectiveness and robustness of the proposed scheme.
Hwang, Jae Ha;Kim, Woo Hyeong;Choi, Jun Ho;Kim, Kwang Seog;Lee, Sam Yong
Archives of Craniofacial Surgery
/
v.22
no.3
/
pp.168-172
/
2021
Posttraumatic pseudoaneurysm of the face is caused by blunt, penetrating, or surgical trauma. Although its incidence is low, pseudoaneurysm rupture can cause a life-threatening, massive hemorrhage. A 48-year-old man visited our emergency center due to a fall-down accident. Three-dimensional computed tomography (CT) showed a comminuted zygomaticomaxillary complex fracture of the left face. After open reduction and internal fixation, the surgical wound healed without any complications. However, the patient was readmitted 10 days after surgery due to pus-like discharge from the wound. Contrast-enhanced CT to find the abscess unexpectedly revealed a pseudoaneurysm in the left retromaxillary area. Massive oral bleeding occurred on the night of re-hospitalization and emergency surgery was done. The bleeding site was identified as a pseudo-aneurysmal rupture of the posterior superior alveolar artery in the retromaxillary area. Hemostasis was achieved by packing Vaseline gauze in the maxillary sinus using an endoscope. Delayed rupture and massive bleeding of posttraumatic retromaxillary pseudoaneurysm after a zygomaticomaxillary fracture is a low-probability, but high-impact event. Therefore, additional contrast-enhanced CT should be considered to evaluate the possibility of a posttraumatic pseudoaneurysm in cases of severe comminuted zygomaticomaxillary fracture.
The paper presents a Bayesian Finite element (FE) model updating methodology by utilizing modal data. The dynamic condensation technique is adopted in this work to reduce the full system model to a smaller model version such that the degrees of freedom (DOFs) in the reduced model correspond to the observed DOFs, which facilitates the model updating procedure without any mode-matching. The present work considers both the MPV and the covariance matrix of the modal parameters as the modal data. Besides, the modal data identified from multiple setups is considered for the model updating procedure, keeping in view of the realistic scenario of inability of limited number of sensors to measure the response of all the interested DOFs of a large structure. A relationship is established between the modal data and structural parameters based on the eigensystem equation through the introduction of additional uncertain parameters in the form of modal frequencies and partial mode shapes. A novel sampling strategy known as the Metropolis-within-Gibbs (MWG) sampler is proposed to sample from the posterior Probability Density Function (PDF). The effectiveness of the proposed approach is demonstrated by considering both simulated and experimental examples.
Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.239-240
/
2012
With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.
This study investigates the relationship between the geochemical maps and the gold-silver deposit locations. Geochemical maps of 21 elements, which are published by KIGAM, locations of gold-silver deposits, and 1:1,000,000 scale geological map of Korea are utilized far this investigation. Pixel size of the basic geochemical maps is 250m and these data are resampled in 1km spacing for the statistical analyses. Relationship between the mine location and the geochemical data are investigated using bayesian statistics and decision tree algorithms. For the bayesian statistics, each geochemical maps are reclassified by percentile divisions which divides the data by 5, 25, 50, 75, 95, and $100\%$ data groups. Number of mine locations in these divisions are counted and the probabilities are calculated. Posterior probabilities of each pixel are calculated using the probability of 21 geochemical maps and the geological map. A prediction map of the mining locations is made by plotting the posterior probability. The input parameters for the decision tree construction are 21 geochemical elements and lithology, and the output parameters are 5 types of mines (Ag/Au, Cu, Fe, Pb/Zn, W) and absence of the mine. The locations for the absence of the mine are selected by resampling the overall area by 1 km spacing and eliminating my resampled points, which is in 750m distance from mine locations. A prediction map of each mine area is produced by applying the decision tree to every pixels. The prediction by Bayesian method is slightly better than the decision tree. However both prediction maps show reasonable match with the input mine locations. We interpret that such match indicate the rules produced by both methods are reasonable and therefore the geochemical data has strong relations with the mine locations. This implies that the geochemical rules could be used as background values oi mine locations, therefore could be used for evaluation of mine contamination. Bayesian statistics indicated that the probability of Au/Ag deposit increases as CaO, Cu, MgO, MnO, Pb and Li increases, and Zr decreases.
Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
Asian Pacific Journal of Cancer Prevention
/
v.15
no.9
/
pp.4049-4054
/
2014
Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.