• 제목/요약/키워드: posterior PDF

검색결과 8건 처리시간 0.018초

The Application of Thera-band on Non-weight Bearing Leg Influence Hip Abductor Activities During Pelvic Drop Exercise in Patients With Gluteus Medius Weakness

  • Su-hwan Cha;Seok-hyun Kim;Seung-min Baik;Heon-seock Cynn
    • 한국전문물리치료학회지
    • /
    • 제30권1호
    • /
    • pp.68-77
    • /
    • 2023
  • Background: The weakness of the gluteus medius (GM) is associated with various musculoskeletal disorders. The increasing GM activity without synergistic dominance should be considered when prescribing pelvic drop exercise (PD). Isometric hip extension or flexion of the non-weight bearing leg using thera-band at the ankle during PD may influence hip abductor activities. Objects: To determine how isometric hip extension or flexion of the non-weight bearing leg using thera-band at the ankle during PD influences the activities of three subdivisions of GM (anterior, GMa; middle, GMm; posterior, GMp), tensor fasciae latae (TFL), contralateral quadratus lumborum (QL), and GMp/TFL, GMm/QL activity ratios in patients with GM weakness. Methods: Twenty-three patients with GM weakness were recruited. Three types of PD were performed: PD, PD with an isometric hip extension of the non-weight bearing leg (PDE), and PD with an isometric hip flexion of the non-weight bearing leg (PDF). Surface electromyography (SEMG) was used to measure hip abductor activities. One-way repeated-measures analysis of variance was used to assess the statistical significance of muscle activities and muscle activity ratios. Results: GMa, GMm, and GMp activities were significantly greater during PDF than during PD and PDE (p < 0.001, p = 0.001; p = 0.001, p = 0.005; p = 0.004, p = 0.004; respectively). TFL activity was significantly greater during PDE than during PD and PDF (p < 0.001, p < 0.001, respectively). QL activity was significantly greater during PDF than during PD (p = 0.003). GMp/TFL activity ratio was significantly lower during PDE than during PD and PDF (p = 0.001, p = 0.001, respectively). There were no significant differences in the GMm/QL activity ratio. Conclusion: PDF may be an effective exercise to increase the activities of all three GM subdivisions while minimizing the TFL activity in patients with GM weakness.

신경회로망과 벡터양자화에 의한 사후확률과 확률 밀도함수 추정 및 검증 (Verification and estimation of a posterior probability and probability density function using vector quantization and neural network)

  • 고희석;김현덕;이광석
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.325-328
    • /
    • 1996
  • In this paper, we proposed an estimation method of a posterior probability and PDF(Probability density function) using a feed forward neural network and code books of VQ(vector quantization). In this study, We estimates a posterior probability and probability density function, which compose a new parameter with well-known Mel cepstrum and verificate the performance for the five vowels taking from syllables by NN(neural network) and PNN(probabilistic neural network). In case of new parameter, showed the best result by probabilistic neural network and recognition rates are average 83.02%.

  • PDF

Bayesian ballast damage detection utilizing a modified evolutionary algorithm

  • Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.435-448
    • /
    • 2018
  • This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

A novel Metropolis-within-Gibbs sampler for Bayesian model updating using modal data based on dynamic reduction

  • Ayan Das;Raj Purohit Kiran;Sahil Bansal
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.1-18
    • /
    • 2023
  • The paper presents a Bayesian Finite element (FE) model updating methodology by utilizing modal data. The dynamic condensation technique is adopted in this work to reduce the full system model to a smaller model version such that the degrees of freedom (DOFs) in the reduced model correspond to the observed DOFs, which facilitates the model updating procedure without any mode-matching. The present work considers both the MPV and the covariance matrix of the modal parameters as the modal data. Besides, the modal data identified from multiple setups is considered for the model updating procedure, keeping in view of the realistic scenario of inability of limited number of sensors to measure the response of all the interested DOFs of a large structure. A relationship is established between the modal data and structural parameters based on the eigensystem equation through the introduction of additional uncertain parameters in the form of modal frequencies and partial mode shapes. A novel sampling strategy known as the Metropolis-within-Gibbs (MWG) sampler is proposed to sample from the posterior Probability Density Function (PDF). The effectiveness of the proposed approach is demonstrated by considering both simulated and experimental examples.

베이지안 방식에 의한 지구물리 역산 문제의 접근 (A Bayesian Approach to Geophysical Inverse Problems)

  • 오석훈;정승환;권병두;이희순;정호준;이덕기
    • 지구물리와물리탐사
    • /
    • 제5권4호
    • /
    • pp.262-271
    • /
    • 2002
  • 본 연구에서는 지구물리 자료의 베이지안 역산을 효과적으로 수행하는 방법에 관해 논의하였다. 베이지안 처리에서 가장 문제가 되는 사전확률분포를 구하기 위해 지구통계학적 방법을 적용하였으며, 사후확률분포의 추정을 위해 MCMC(Markov Chain Monte Carlo) 방법을 적용하였다. 쌍극자배열 전기비저항 탐사 자료의 2차원 역산을 위해 슐럼버저배열 전기비저항탐사 자료와 시추공 자료를 사전 정보로 이용하였으며, 이들 사전정보에 대해 지구통계학적 방법을 적용하여 사전확률분포를 작성하였다. 쌍극자배열 전기비저항 탐사 자료를 최대 우도함수로 하는 사후확률분포는 차원이 매우 높은 적분을 요구하므로, 이를 추정하기 위해 MCMC기술을 적용하였으며, 보다 효율적인 접근을 위해 Gibbs샘플링 방법을 이용하였다. 그 결과 비모수적 방식으로 사후확률분포를 분석함으로써 보다 신뢰성 있는 해를 구할 수 있었으며, 주변화(marginalization)된 사후확률분포를 이용하여 다양한 분석을 적용할 수 있었다.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발 (Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET)

  • 이병일;이재성;이동수;강원준;이종진;김수진;최승진;정준기;이명철
    • 대한핵의학회지
    • /
    • 제38권6호
    • /
    • pp.486-491
    • /
    • 2004
  • 목적: 요소분석법. 독립성분분석법 등이 PET을 이용하여 심근혈류를 비침습적으로 측정하기 위하여 사용되어 왔다. 이론적으로 뛰어나고 새로운 방법인 앙상블 독려성분분석법을 이용하여 $H_2^{15}O$ 동적 심근 PET데이터의 정량분석방법을 개발하였다. 이 연구에서 사용한 앙상블 독려성분분석법을 이용하여 환자의 혈류를 정량화 하였다. 대상 및 방법: 관동맥질환이 의심되어 관류 SPECT를 시행한 환자 20명을 대상으로 $H_2^{15}O$ 동적 심근 PET을 시행한 후 앙상블 독립성분분석법을 이용하여 심근 독립성분영상을 추출하였으며, 좌심실영역과 심근영역에 대한 영상대조도를 조사하였다. 앙상블 학습은 독립성분과 가중치 행렬에 대한 확률분포를 가정하고 베이지안 이론에 의해서 혼합자료에 대한 확률분포를 추정한다. 이렇게 추정한 혼합자료의 확률분포와 실제 분포간의 차이인 Kullback-Leibler 발산치가 최소가 되도록 독립성분과 가중치 행렬을 순차적으로 변화시켜가며 최종 해를 찾는 방식이다. 이 연구에서 사후확률분포는 동적 핵의학 영상에 적합한 비음성제약조건과 함께 수정된 가우시안 분포를 이용하여 최적화 하였다. 혈류량은 심첨부, 중벽 네 부분, 하벽 네 부분의 9개 영역으로 나누어 측정하였으며, 측정결과에 대해 관류 SPECT 소견과 관동맥조영술의 소견과 비교하였다. 결과: 전체 20명의 휴식기 및 부하기 영상에서 5명을 제외한 15명의 데이터에 대해 심근혈류를 측정할 수 있었다. $H_2^{15}O$ 동적 심근 PET에서 앙상블 독립성분분석법을 이용하여 정량화한 휴식기 혈류량은 $1.2{\pm}0.40$ ml/min/g, 부하기 혈류량은 $1.85{\pm}1.12$ml/min/g이었다. 같은 영역에 대해 두 번 측정했을 때 측정된 심근혈류값의 상관계수는 0.99로 재현성이 높았다. 분리된 독립성분영상에서 영상대조도는 좌심실에 대한 심근영역의 비는 평균 1:2.7이었다. 관동맥 조영술을 시행한 9명에서 협착이 없는 분절과 협착이 있는 분절의 혈류예비능에 유의한 차이가 있었다(P<0.01). 또한, 관동맥조영술에서 협착이 확인된 66분절의 심근관류 SPECT 소견에서 가역적 혈류감소를 보인 분절의 혈류예비능이 더 많이 감소되는 경향을 보였으나 통계적 유의성을 보이지는 않았다. 결론: 앙상블 학습을 이용한 독립성분분석방법을 이용하여 심근혈류가 측정이 되었다. 앙상블 독립성분분석법을 이용한 $H_2^{15}O$ 동적 심근 PET 분석방법이 관상동맥 질환의 분석 및 동적 핵의학 영상 데이터의 연구에 도움이 될 것으로 기대된다.