• 제목/요약/키워드: post-peak strength

검색결과 137건 처리시간 0.021초

Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성 (Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동 (Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete)

  • 안경림;장석준;장상혁;윤현도
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.229-236
    • /
    • 2015
  • 콘크리트는 압축강도가 증가할수록 취성적인 성질이 두드러지는데, 이를 보완하기 위해 강섬유를 혼입하여 콘크리트에 연성을 부여하는 강섬유 보강 콘크리트에 대한 연구가 진행되고 있다. 강섬유 보강 콘크리트는 섬유 혼입률에 따라 역학적 특성이 달라지며, 일반적으로 1.5%의 혼입률이 가장 효과적인 것으로 알려져 있다. 섬유 혼입률 2%를 초과하게 되면 섬유 뭉침현상이 발생하는데, 이로 인해 역학적 특성이 저하된다. 본 연구에서는 2% 이상의 높은 혼입률에서 섬유의 분산성을 향상시키기 위해 굵은 골재 크기를 변수로 재령에 따른 강섬유 보강 콘크리트의 압축거동에 대해 평가하였다. 굵은 골재 크기에 따른 굳지 않은 성상, 압축강도, 탄성계수 및 압축인성 등을 평가한 결과 섬유 혼입률이 증가할수록 공기량은 증가하였으며, 공기량이 증가함에 따라서 슬럼프는 감소하였다. 또한 골재 크기가 압축강도 및 탄성계수에 미치는 영향은 미소하였지만, 섬유의 분산성을 향상시켜 압축인성 및 최대하중 이후 거동에 영향을 끼치는 것으로 나타났다. 또한 강섬유 보강 콘크리트의 압축인성은 재령이 지날수록 감소하게 되는데, 굵은 골재 크기가 감소할수록 압축인성의 감소율이 줄어들어 보다 안정적인 것으로 나타났다. 따라서 본 연구에서 나타난 것과 같이 강섬유 보강 콘크리트의 굵은 골재 크기를 조절하여 높은 혼입률을 갖는 강섬유 보강 콘크리트의 섬유 분산성과 연성적인 거동을 부여할 수 있을 것으로 판단된다.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • 제27권5호
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history

  • Au, F.T.K.;Bai, B.Z.Z.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.309-324
    • /
    • 2005
  • The moment-curvature relationship of reinforced concrete beams made of normal- and high-strength concrete experiencing complex load history is studied using a numerical method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the concrete and steel reinforcement. The load history considered includes loading, unloading and reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is also path-dependent, is similar to the material stress-strain relationship with stress-path dependence. However, the unloading part of the moment-curvature relationship of the beam section is elastic but not perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is also observed that when unloading happens, the variation of neutral axis depth has different trends for under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still residual curvature and stress in the section in some circumstances. Various issues related to the post-peak behavior of reinforced concrete beams are also discussed.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.

이종 마찰용접 강봉재의 후열처리에 따른 기계적 특성 (Mechanical Properties of Dissimilar Friction Welded Steel Bars in Relation to Post Weld Heat Treatment)

  • 공유식;김선진
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.402-408
    • /
    • 2006
  • Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and post-weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=60(MPa),\;P_2=100(MPa),\;t_1=4(s),\;t_2=5(s)$ when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

어깨뼈 운동 이상증을 가진 청소년기 야구선수들을 위한 물리치료적 프로그램: 어깨뼈 안정화 운동과 동반된 뒤쪽 어깨 스트레칭(PSSE) 중재 후 효과 비교 (A Physiotherapy Program for Adolescent Baseball Players with Scapular Dyskinesis: Comparison of the effects of posterior shoulder stretching combined with scapular stabilization exercises (PSSE))

  • 이건철;김현수;추연기
    • 대한통합의학회지
    • /
    • 제12권1호
    • /
    • pp.139-150
    • /
    • 2024
  • Purpose : Scapular dyskinesis, it have been shown to be common in overhead athletes and has been associated with RC muscle strength. Posterior shoulder tightness (PST) has been suggested as an important factor causing scapular dyskinesis. Therefore, rehabilitation programs should focus on a posterior shoulder stretch combined with scapular stabilization exercise (PSSE) intervention. Determine the effects of posterior shoulder stretch combined with scapular stabilization exercise on the rotator cuff (RC) muscles strength, functional strength ratio (FSR), range of motion (ROM), and pain. Methods : 30 adolescent baseball players participated and subjects were allocated PSSE group (n=15) or the SSE group (n=15). Both group performed a 6-weeks intervention and measured of isokinetic peak torque/body weight (PT/BW) of concentric external rotator (CER), eccentric external rotator (EER), concentric internal rotator (CIR), eccentric internal rotator (EIR), FSR, ROM, and pain. Results : After 6 weeks PSSE, significant increase CER PT/BW (+6.02±4.76 %), EER PT/BW (+5.39±4.22 %), EER to CIR ratio (+.17±.16), and internal rotation ROM (+15.08±3.57 °). Whereas, significant decrease EIR to CER ratio (-.14±.18), external rotation ROM (-12.00±6.94 °), and GIRD (-17.41±2.84 °) compared with pre-intervention. No significant difference of isokinetic PT/BW of CIR and EER post-intervention. In the SSE group showed no significant difference all measurements for isokinetic PT/BW, FSR, and ROM post-intervention. The pain was significant improve both PSSE group (-3.25±1.60) and SSE group (-2.83±1.85) post-intervention. Conclusion : Both the PSSE and SSE interventions led to more pain relief. However, only the PSSE group showed ROM, CER, EER PT/BW, and FSR improvements. These results might suggest that the PSSE intervention is a more effective program for improving RC muscle strength and balance, in particular, concentric and eccentric ER muscle strength, FSR and can expect to prevent shoulder injuries in adolescent baseball players with scapular dyskinesis.

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.