• 제목/요약/키워드: post-peak strength

검색결과 139건 처리시간 0.02초

The immediate effects of local vibration on ankle plantar flexor muscle activation and peak torque in healthy adults

  • Cho, Minjo;Yoon, Doyoo;Yoo, Jaehyun;Yi, Donghyun;Kang, Daewon;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권2호
    • /
    • pp.113-119
    • /
    • 2020
  • Objective: The vibration device is one of the most commonly used warm-up devices not only for healthy athletes but also for healthy individuals. Therefore, this study aimed to investigate the immediate effects of local vibration on ankle plantar flexor muscle activation and peak torque in healthy adults. Design: One-group pretest-posttest design. Methods: This was a single-group study comprising a total of 36 (16 males and 20 females) participants. The average age of the 36 participants was 22.3 years. All the participants' concentric and eccentric peak torques of the gastrocnemius lateralis muscle were measured using an isokinetic device. Simultaneously, the participants' muscle activity was measured by surface electromyography. After the pre-experimental data were collected, the participants comfortably sat on the prepared chair with their hips and knees flexed to 90°. While in sitting position, local vibration was applied for 10 minutes using a 1:1 ratio intermittent pulsing mode device based on a previous study. Then, the post-experimental data were collected immediately after the local vibration by performing a similar process performed during the pre-experimental data collection. Results: The results showed a significant difference in muscle activity and eccentric peak torque (p<0.05). On the contrary, concentric peak torque values showed an insignificant difference with pre- and post-value. Conclusions: The results of this study demonstrated that local vibration can be possibly considered as one of the effective ways to increase ankle plantar flexor muscle activity and muscle performance, specifically the eccentric peak torque, in healthy adults.

Influence of axial load and loading path on the performance of R.C. bridge piers

  • Kehila, Fouad;Bechtoula, Hakim;Benaouar, Djillali
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.563-588
    • /
    • 2015
  • Piers are the most vulnerable part of a bridge structure during an earthquake event. During Kobe earthquake in 1995, several bridge piers of the Hanshin Expressway collapsed for more than 600m of the bridge length. In this paper, the most important results of an experimental and analytical investigation of ten reinforced concrete bridge piers specimens with the same cross section subjected to constant axial (or variable) load and reversed (or one direction) cycling loading are presented. The objective was to investigate the main parameters influencing the seismic performance of reinforced concrete bridge piers. It was found that loading history and axial load intensity had a great influence on the performance of piers, especially concerning strength and stiffness degradation as well as the energy dissipation. Controlling these parameters is one of the keys for an ideal seismic performance for a given structure during an eventual seismic event. Numerical models for the tested specimens were developed and analyzed using SeismoStruct software. The analytical results show reasonable agreement with the experimental ones. The analysis not only correctly predicted the stiffness, load, and deformation at the peak, but also captured the post-peak softening as well. The analytical results showed that, in all cases, the ratio, experimental peak strength to the analytical one, was greater than 0.95.

The Effects of Tibial Rotation on Muscle Activity and Force of Hamstring Muscle During Isometric Knee Flexion in Healthy Women

  • Ko, Min-Joo;Kang, Min-Hyeok
    • PNF and Movement
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2021
  • Purpose: The purpose of this study was to determine how the position of tibial rotation affects peak force and hamstring muscle activation during isometric knee flexion in healthy women. Methods: Seventeen healthy women performed maximum isometric knee flexion at 30˚ with three tibial rotation positions (tibial internal rotation, neutral position, and tibial external rotation). Surface electromyographic (EMG) activity was recorded from the medial hamstring (MH) and lateral hamstring (LH) muscles. The strength of the knee flexor was measured with a load-cell-type strength-measurement sensor. Data were analyzed using one-way repeated analysis of variance. Results: The results showed that MH and LH activities and peak force were significantly different among the three tibial rotation conditions (p < 0.01). The post-hoc comparison revealed that the MH EMG activity in tibial neutral and internal rotation positions were significantly greater than tibial external rotation (p < 0.01). The LH activity in tibial external rotation was significantly greater than the tibial neutral position and internal rotation (p < 0.01). The peak force of the knee flexor was also greater in the external tibial rotation position compared with the tibial neutral and internal rotation positions (p < 0.01). Conclusion: Our findings suggest that hamstring muscle activation could be changed by tibial rotation.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

Generalization of shear truss model to the case of SFRC beams with stirrups

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.227-244
    • /
    • 2012
  • A theoretical model for shear strength evaluation of fibrous concrete beams reinforced with stirrups is proposed. The formulation is founded on the theory of plasticity and the stress field concepts, generalizing a known plastic model for calculating the bearing capacity of reinforced concrete beams, to the case of fibrous concrete. The beneficial effect of steel fibres is estimated taking into account the residual tensile strength of fibrous concrete, by modifying an analytical constitutive law which presents a plastic plateau as a post-peak branch. Around fifty results of experimental tests carried out on steel fibrous concrete beams available in the literature were collected, and a comparison of shear strength estimation provided by other semi-empirical models is performed, proving that the numerical values obtained with the proposed model are in very good agreement with the experimental results.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Acute beetroot juice supplementation does not attenuate knee extensor exercise muscle fatigue in a healthy young population

  • Lee, Seungyong;Abel, Mark G.;Thomas, Travis;Symons, T. Brock;Yates, James W.
    • 운동영양학회지
    • /
    • 제23권1호
    • /
    • pp.55-62
    • /
    • 2019
  • [Purpose] The effect of acute nitrate supplementation on muscle fatigue is largely unknown. This study aimed to evaluate the effect of acute nitrate supplementation on muscle fatigue. [Methods] Thirty-five recreationally active subjects consumed 140 ml of beetroot (BR) juice (nitrate: 8 mmol·d-1) or placebo (PL) 12 and 2.5 hours before two exercise sessions. Peak torque was measured during 50 repetitions, at maximal effort, and during concentric knee extensions at 90°·s-1. Blood pressure (BP) was recorded pre- and post-exercise. [Results] Peak torque, maximum work, rate of fatigue, and rate of work fatigue were similar between the BR and PL conditions. Post-exercise diastolic BP (BR: 67.2 ± 9.8 vs. PL: 64.5 ± 7.9 mmHg, p < 0.05) and mean arterial pressure (BR: 91.6 ± 9.3 vs. PL: 88.8 ± 8.2 mmHg, p < 0.05) were higher with BR supplementation. [Conclusion] These findings suggest that the acute intake of BR juice had no effect on knee extensor muscle strength or fatigue but increased BP in a healthy recreationally active population.

6주간 야외용 운동기구를 사용한 저항운동이 노인 여성의 무릎신전근 기능 및 구조에 미치는 영향 (Effects of Six-week Resistance Exercise using an Outdoor Knee Extension Machine on Function and Structure of the Knee Extensor Muscles)

  • 최동성;김진선;김동일;전용관;원영신;이해동
    • 한국운동역학회지
    • /
    • 제22권2호
    • /
    • pp.201-208
    • /
    • 2012
  • The purpose of this study was to investigate the effect of leg extension exercises performed on outdoor resistance exercise machines on knee extension muscle strength and quadriceps muscle group cross sectional area (CSA) in elderly women. Two groups were recruited for this study, including an exercise group (EG: n=13, $71.38{\pm}2.79$ yrs) and a control group (CG: n=5, $73.4{\pm}5.94$), In all subjects, maximum isometric and isokinetic muscle strength of knee flexion and extension were measured using an isokinetic dynamometer (Cybex(R) Humac Norm Testing & Rehabilitation System, USA). Quadriceps muscle group CSA were measured using MRI (Philps, Intera 1.5 T, NE Netherlands). The results of this study showed that post-intervention isometric knee extension peak torque value were higher than pre-intervention measures in the EG. However, the EG did not show improvement in quadriceps muscle group CSA, Also, no differences in the shift of optimal knee joint angle were observed between pre and post-intervention exercise. Outdoor leg extension exercise showed small increases in muscle strength in comparison to other resistance training exercises. The results of this study suggest that because outdoor leg extension exercise machines lack a progressive loading mechanism, significant increases in muscle strength may not be obtained.

요부안정화 운동이 만성요통여성 환자의 근활성도와 등속성 근력에 미치는 영향 (The Effects of Lumbar Stabilization Exercise on Muscle Activity and Isokinetic Muscle Strength of Female Patients with Chronic Low Back Pain)

  • 방현수
    • 대한물리의학회지
    • /
    • 제10권2호
    • /
    • pp.63-71
    • /
    • 2015
  • PURPOSE: The purpose of this study to investigate the effects of exercise on lumbar stabilization in muscle activity and isokinetic muscle strength of female with chronic low back pain. METHODS: The candidates was chose to twenty women in their 30s and 40s complaining back pain for over 12 weeks and consist of 10 people for lumbar stabilization and general physical therapy group(PL group), another 10 people for general physical therapy group(GP group). Lumbar stabilization exercise was conducted for 8 weeks and was comprised of 60 minutes for two times a week. In order to examine the effects of lumbar stabilization, results in the present study were analyzed maximal voluntary isometric contraction (MVIC) using electromyogram to measure muscle activity and isokinetic performance including peak torque and average power at the pre to post. RESULTS: The following are results in this study. The MVIC and isokinetic muscle strength were gradually increased in all group. As the result of the test of the MVIC and isokinetic muscle strength, the difference of lumbar stabilization and general physical therapy group is statistically more significant than that of general physical therapy group. CONCLUSION: In the present study, results indicate that lumbar stabilization helps to improve the muscle activity and isokinetic muscle strength.