• 제목/요약/키워드: post-embryonic development

검색결과 76건 처리시간 0.022초

Existence of Amino Acids in Defined Culture Medium Influences In Vitro Development of Parthenogenetic and Nuclear Transfer Porcine Embryos

  • Won, Cheol-Hee;Park, Sang-Kyu;Kim, Ki-Young;Roh, Sang-Ho
    • 한국수정란이식학회지
    • /
    • 제23권4호
    • /
    • pp.245-250
    • /
    • 2008
  • This study was designed to investigate the effect of essential amino acids (EAA) and/or non-essential amino acids (NEAA) on the development of parthenogenetic and somatic cell nuclear transfer (SCNT) porcine embryos in vitro. To evaluate the timing of amino acids supplementation, activated oocytes were cultured in NCSU23-PVA with EAA, NEAA or NEAA+EAA (AAs) during specific periods as below: EAA, NEAA or AAs were supplemented during Day 0 to 6 (whole culture period: ALL), Day 2 to Day 6 (post-maternal embryonic transition period: POST-MET), Day 5 to Day 6 (post-compaction period: POST-CMP), Day 0 to Day 2 (pre-maternal embryonic transition period: PRE-MET), or Day 0 to Day 4 (post-compaction period: PRE-CMP). Supplementation of NEAA decreased cleavage rates in PRE-MET and PRE-CMP and also decreased blastocyst rates in POST-CMP. On the other hand, EAA significantly enhanced blastocyst formation rate in POST-MET and no detrimental effect on embryonic development in other groups. Interestingly, NEAA and EAA had synergistic effect when they were supplemented to the medium during whole culture period. Supplementation of AAs also enhanced SCNT porcine embryo development whereas BSA-free medium without AAs could not supported blastocyst formation of SCNT embryos. In conclusion, existence of EAA and NEAA in defined culture medium variously influences the development of parthenogenetic and SCNT porcine embryos, and their positive effect are only occurred when both EAA and NEAA are supplemented to the medium during whole culture period. Additionally, AAs supplementation enhances the blastocyst formation of SCNT porcine embryos when they are cultured in the defined condition.

Indomethacin이 생쥐 착상전 배아의 발생 및 부화에 미치는 영향 (Effects of Indomethacin on Development and Hatching of Mouse Embryo)

  • 전용필;계명찬;김정훈;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제24권1호
    • /
    • pp.35-42
    • /
    • 1997
  • The present study was designed to define the role of prostaglandin in the development and hatching of mouse embryo. The effects of indomethacin, an inhibitor of prostaglandin synthesis, on the development and hatching of morula and blastocyst were examined. In early morula stage, embryos were degenerated significantly at 100 ${\mu}M$ and 200 ${\mu}M$ indomethacin. However, the viability of embryos was not influenced by concentration in any other embryonic stages. In all embryonic stages, the hatching was suppressed with concentration dependent manner, but expansion was not suppressed. Particularly, in 84h embryos post hCG injection, the hatching was suppressed significantly compared with post hCG 72h or 96h embryos. When embryos were treated with 100 ${\mu}M$ indomethacin for a specific time (12h) in according to the development stage, the hatching was suppressed all groups. These suppressional effect was decreased as embryonic development stage was progressed. However, the expansion was not affected in all treatment group. This study suggests that hatching-related metabolic substances are synthesized from morula stage and intraembryonic signaling mediated prostaglandin was important for development and hatching of mouse embryo.

  • PDF

Embryonic Development of Siberian Sturgeon Acipenser baerii under Hatchery Conditions: An Image Guide with Embryological Descriptions

  • Park, Chulhong;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제16권1호
    • /
    • pp.15-23
    • /
    • 2013
  • Normal embryonic development at a constant temperature ($18^{\circ}C$) has been described for the Siberian sturgeon Acipenser baerii (Acipenseriformes). Hormone-induced spawning and artificial insemination were performed to prepare embryonic batches for embryologic examination. After insemination, early cleavages of the Siberian sturgeon embryos continued for 7 h post-fertilization (HPF), showing the typical pattern of uneven holoblastic cleavage. Blastulation and gastrulation began at 9 HPF and 19 HPF, respectively. Epiboly formation (2/3 covered) was observed at 25 HPF during gastrulation. Neurulation was initiated with the formation of a slit-like neural groove from the blastopore at 33 HPF. During neurulation, the primary embryonic kidney (pronephros) and s-shaped heart developed. The embryos underwent progressive differentiation, which is typical of Acipenseriform species. A mass hatching was observed at 130 HPF, and the average total length of the hatched prolarvae was 10.5 mm. The hatched prolarvae possessed a typical pigment plug (yolk plug). The results of this study are valuable not only as a reference guide for the artificial propagation of Siberian sturgeon in hatcheries but also as the basis for the derivation of developmental gene expression assays for this species.

Optimization of Post-Activation Systems to Improve the Embryonic Development in Porcine Parthenogenesis and Somatic Cell Nuclear Transfer

  • Roy, Pantu Kumar;Kim, Ghangyong;Fang, Xun;Hassan, Bahia MS;Soysa, Mahanama De;Shin, Sang Tae;Cho, Jong Ki
    • 한국수정란이식학회지
    • /
    • 제32권3호
    • /
    • pp.95-104
    • /
    • 2017
  • This study was conducted to establish the optimal chemical post-activation conditions in porcine embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) using 4 different chemical compositions (cytochalasin B (CB), cyclohexamide (CHX), demecolcine (DC), 6-dimethylaminopurine (DMAP). Porcine embryos were produced by PA and SCNT and then, cultured for post-activation with CB ($7.5{\mu}g/mL$), CB ($7.5{\mu}g/mL$) + CHX ($10{\mu}g/mL$), CB ($7.5{\mu}g/mL$) +DC ($0.4{\mu}g/mL$), and CB ($7.5{\mu}g/mL$) + DMAP (2 mM). In PA embryonic development, cleavage rates have been significantly higher in CB group (94.7%) and CB+DMAP group (94.1%) than that of CB+CHX and CB+DC group (88.1 and 84.3%, respectively). There have been no significant differences in blastocyst formation rates among the four groups. In cell number of blastocyst was shown in CB group (42.3%) significantly higher than CB+CHX and CB+DC group (40.6 and 40.6%, respectively). In SCNT embryonic development, CB+DMAP group (89.7%) significant differences were found on embryo cleavage rates when compared with other three groups. Blastocyst formation rates in CB+DMAP group (26.9%) were significantly higher when compared with CB, CB+CHX, and CB+DC groups (25.5, 20.2, and 22.1%, respectively). In blastocyst cell number, CB+DMAP group (41.4%) was found higher significant difference compared with other three groups. Additionally, we have investigated survivin expression in early development stages of porcine SCNT embryos for more confirmation. Our results establish that CB group and CB+DMAP group for 4 h during post-activation improves pre-implantation improvement of PA and SCNT embryos.

Cadmium exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction

  • Min Ju Kim;Se‑Been Jeon;Hyo‑Gu Kang;Bong‑Seok Song;Bo‑Woong Sim;Sun‑Uk Kim;Pil‑Soo Jeong;Seong‑Keun Cho
    • 한국동물생명공학회지
    • /
    • 제39권1호
    • /
    • pp.48-57
    • /
    • 2024
  • Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 µM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 µM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.

Post-Activation Treatment with Cytochalasins and Latrunculin A on the Development of Pig Oocytes after Parthenogenesis and Somatic Cell Nuclear Transfer

  • Park, Bola;Lee, Joohyeong;Lee, Yongjin;Elahi, Fazle;Jeon, Yubyeol;Hyun, Sang-Hwan;Lee, Eunsong
    • 한국수정란이식학회지
    • /
    • 제28권2호
    • /
    • pp.133-139
    • /
    • 2013
  • The objective of this study was to determine the effect of post-activation treatment with cytoskeletal regulators in combination with or without 6-dimethylaminopurine (DMAP) on embryonic development of pig oocytes after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). PA and SCNT oocytes were produced by using in vitro-matured pig oocytes and treated for 4 h after electric activation with $0.5{\mu}M$ latrunculin A (LA), $10.4{\mu}M$ cytochalasins B (CB), and $4.9{\mu}M$ cytochalasins D (CD) together with none or 2 mM DMAP. Post-activation treatment of PA oocytes with LA, CB, and CD did not alter embryo cleavage (85.8~88.6%), blastocyst formation (30.7~ 32.4%), and mean cell number of blastocysts (33.5~33.8 cells/blastocyst). When PA oocytes were treated with LA, CB, and CD in combination with DMAP, blastocyst formation was significantly (P<0.05) improved by CB+DMAP (42.5%) compared to LA+DMAP (28.0%) and CD+DMAP (25.1%), but no significant differences were found in embryo cleavage (77.5~78.0%) and mean blastocyst cell number (33.6~35.0 cells) among the three groups. In SCNT, blastocyst formation was significantly (P<0.05) increased by post-activation treatment with LA+DMAP (32.9%) and CD+DMAP (35.0%) compared to CB+DMAP (22.0%) while embryo cleavage (85.5~85.7%) and blastocyst cell number (41.1~43.8 cells) were not influenced. All three treatments (LA, CB, and CD with DMAP) effectively inhibited pseudo-polar body extrusion in SCNT oocytes. The proportions of oocytes showing single pronucleus formation were 89.6%, 83.9%, and 93.3%, respectively with the increased tendency (P<0.1) by LA+DMAP and CD+ DMAP compared to CB+DMAP. Our results demonstrate that post-activation treatment with LA or CD in combination with DMAP improves pre-implantation development of SCNT embryos and the stimulating effect of cytoskeletal modifiers on embryonic development is differentially shown depending on the origin (PA or SCNT) of embryos in pigs.

Vascular Endothelial Growth Factor Has Beneficial Effect Independent of Serum Components throughout Oocyte Maturation and Early Embryonic Development in Cattle

  • Luo, Hailing;Kimura, Koji;Hirako, Makoto
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권4호
    • /
    • pp.495-499
    • /
    • 2006
  • In our previous studies, we demonstrated that Vascular Endothelial Growth Factor (VEGF) enhances bovine oocyte maturation and early embryonic development in serum supplemented media. In this experiment, to determine the synergistic effect of VEGF with serum components on early embryonic development in vitro in cattle, 1 mg/ml polyvinyl-alcohol (PVA) was replaced with foetal bovine serum (FBS) in maturation and culture media. Bovine oocytes were matured in Synthetic Oviduct Fluid (SOF) supplemented with PVA, PVA+5 ng/ml of VEGF, FBS, or FBS+VEGF. Fertilized oocytes were cultured in the same conditions for 8 days. The development of embryos was examined at 48 h post- insemination and on days 6, 7 and 8. The results were analyzed using repeated measures two- factor ANOVA, in which the effects of VEGF and serum were assigned as two factors. The development rate to 4- to 8-cell embryos at 48 h was significantly higher in the PVA+VEGF group than in the PVA group (44.7% and 31.5%, respectively). However, the highest development rate to 4- to 8-cell embryos was obtained from the FBS+VEGF group (58.8%). On day 8, the blastocyst rates were higher in the PVA+VEGF (22.8%), FBS (32.1%, p<0.05) and FBS+VEGF (42.1%, p<0.05) groups than in the PVA group (17.1%). Two- factor ANOVA of the development rates indicates that VEGF had a significant effect, but had no synergistic effect with serum components on early embryonic development. The results of the present study demonstrate that VEGF improves the in vitro developmental competence of bovine oocytes and/or embryos independent of the effect of serum components.

Effects of Dexamethasone on Embryo Development and Hox Gene Expression Patterns in Mice

  • ;;;김명희
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.231-238
    • /
    • 2011
  • During pregnancy, stress induces maternal glucocorticoid secretion, which in turn is known to affect structural malformation, retardation of growth, reduced birth weight of the fetus. As Hox genes are master transcription factors which fulfill critical roles in embryonic development, we aimed to explore the possibility that alterations of the Hox gene expression might be involved in stress-induced malformation. The pregnant mice were injected with dexamethasone at a dose of 1 mg/kg or 10 mg/kg on day 7.5, 8.5 and 9.5 p.c. (post coitum), as well as saline as control. Embryos of E11.5 and E18.5 were obtained by sacrificing pregnant animals. Weight and crown-rump length (CRL) were measured. RT-PCR was performed to examine the Hox gene expression levels. Embryos given dexamethasone at day 7.5~9.5 p.c. had small CRL and weighed less both in E11.5 and E18.5. The percentage of embryos showing abnormalities was high in groups received high dose of dexamethasone. To define the molecular basis for abnormal embryonic development, we analyzed the Hox gene expression pattern and found that many Hox genes display altered expression. Effects of prenatal dexamethasone treatment on embryonic development might be associated with the aberrant Hox gene expression.

Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

  • Shahjahan, Md.;Liu, Ranran;Zhao, Guiping;Wang, Fangjie;Zheng, Maiqing;Zhang, Jingjing;Song, Jiao;Wen, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권4호
    • /
    • pp.479-486
    • /
    • 2016
  • A previous genome-wide association study (GWAS) exposed histone deacetylase 2 (HDAC2) as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages) and post-hatch (five ages) development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED) in breast (ED 14, 16, 18, and 21) and thigh (ED 14 and 18, and ED 14 and 21) muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7) increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1), both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle) development of chicken skeletal muscle.