• Title/Summary/Keyword: post-buckling analysis

Search Result 176, Processing Time 0.02 seconds

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Experimental investigation for failure analysis of steel beams with web openings

  • Morkhade, Samadhan G.;Gupta, Laxmikant M.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.647-656
    • /
    • 2017
  • This paper presents an experimental study on the behaviour of steel beams with different types of web openings. Steel beams with web openings became progressively more accepted as a well-organized structural form in steel construction since their existence. Their complicated design and profiling method provides better flexibility in beam proportioning for strength, depth, size and location of holes. The objective of this study is to carry out the experiments on steel beams with different types of web openings and performed non-linear finite element (FE) analysis of the beams that were considered in the experimental study in order to determine their ultimate load capacity and failure modes for comparison. Ten full scale models of steel beam with web openings have been tested in the experimental investigation. The finite element method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify test results and to investigate the nonlinear behaviour of failure modes such as local buckling, lateral torsional buckling, web-post buckling, shear buckling and Vierendeel bending of beams.

Post-Buckling Behaviour and Buckling Strength of the Circular Cylinder Under Axial Compression (압축하중을 받는 원통실린더의 후좌굴 거동 및 좌굴강도)

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2018
  • Cylindrical shells are often used in the construction of ship and land-based structures such as deck plating with a camber, side shell plating for fore and aft part pipes, as well as storage tanks. It has been believed that such curved shells can be modeled fundamentally as a part of the cylinder under axial compression. From the estimations made based on cylindrical models, it is known that in general, curvature increases the buckling strength of a curved shell when subjected to axial compression, and the same curvature is also expected to increase the overall strength. A series of elastic large deflection analyses were conducted in order to clarify the fundamentals observed in the buckling and post-buckling behaviour of circular cylinders under axial compression. In the present paper, an FE-series analysis has been performed based on the elastic large deflection behaviour, and the effect of parameters has been clarified. The ultimate strength behavior of the circular cylinder was found to be significantly influenced by both the initial deflection and the FE-modeling method.

Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block (박판 블록의 용접 좌굴 변형 해석에 관한 연구)

  • Jang, Gyeong-Bok;Park, Jung-Gu;Yang, Jin-Hyeok;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

On the post-buckling behaviour of plates under stress gradient

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 1996
  • In this paper the elastic post-buckling behaviour of plates under non-uniform compressive edge stress is investigated. The compatibility differential equations is first solved analytically and then an approximate solution of the equilibrium equation is obtained using the Galerkin method. Explicit expressions are derived for the load-deflection, ultimate strength and membrane stress distributions. Analytical effective width formulations, based on the characteristics of the stress field of the buckled plate, are proposed for this general loading condition. The predicted load-deflection expression is compared with independent test results. Results are also presented detailing the load-deflection behaviour and stress distribution for various aspect ratios.

A Study on the Post-Buckling analysis of spatial structures by using dynamic relaxation method (동적이완법을 이용한 공간구조의 후좌굴 해석에 관한 연구)

  • Lee, Kyong-Soo;Lee, Sang-Ju;Lee, Hyong-Hoon;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.154-160
    • /
    • 2005
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. The dynamic relaxation do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Cold-formed austenitic stainless steel SHS brace members under cyclic loading: Finite element modelling, design considerations

  • YongHyun Cho;Fangying Wang;TaeSoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.135-145
    • /
    • 2023
  • This study presents a numerical investigation into the hysteretic behavior of cold-formed austenitic stainless steel square hollow section (SHS) brace members using a commercial finite element (FE) analysis software ABAQUS/Standard. The initial/post buckling and fracture life of SHS brace members are comprehensively investigated through parametric studies with FE models incorporating ductile fracture model, which is validated against the existing laboratory test results collected from the literature. It is found that the current predictive models are applicable for the initial buckling strengths of SHS brace members under cyclic loading, while result in significant inaccuracy in predictions for the post-buckling strength and fracture life. The modified predictive model is therefore proposed and the applicability was then confirmed through excellent comparisons with test results for cold-formed austenitic stainless SHS brace members.

Spatial Post-buckling Analysis of Thin-walled Space Frames based on the Corotational Formulation (대회전을 고려한 공간 박벽 뼈대구조물의 기하 비선형 후좌굴 거동 해석)

  • Lee, Kyoung Chan;Park, Jung Il;Kim, Sung Bo;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.599-610
    • /
    • 2007
  • In this paper, we described a co-rotational formulation for the geometrical nonlinear analysis of three-dimensional frames. We suggested a new concept called the Zero-Twist-Section Condition (ZTSC) to decide the element coordinate system consistently. According to the ZTSC procedure, it is possible to obtain an element coordinate system and natural deformations consistently when finite displacements and rotations are induced in an element. Based on the developed procedure, numerical examples are investigated to calculate natural rotations while finite displacements are imposed on an element. Also, the developed co-rotational procedure gives accurate results in the analysis of post-buckling problems with finite rotations.

A Study on the Variation of Post Buckling Behaviour of 2-dimensional Shallow Arch Truss after Size Optimization (크기최적화 이후에 나타나는 2차원 얕은 아치 트러스의 후 좌굴 거동의 변화에 대한 연구)

  • Lee, Sang-Jin;Lee, In-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.107-112
    • /
    • 2008
  • This paper investigates the variation of post-buckling behaviours of 2-dimensional shallow arch type truss after sizing optimization. The mathematical programming technique is used to produce the optimum member size of 2D arch truss against a central point load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of truss are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The postbuckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge change of post-buckling behaviour between the initial structure and optimum structure. Numerical results can be used as useful information for future research of large spatial structures.

  • PDF