• Title/Summary/Keyword: post-buckling

Search Result 280, Processing Time 0.032 seconds

Experimental investigation on the buckling of thin cylindrical shells with two-stepwise variable thickness under external pressure

  • Aghajari, Sirous;Showkati, Hossein;Abedi, Karim
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.849-860
    • /
    • 2011
  • The buckling capacity of the cylindrical shells depends on two geometric ratios of L/R and R/t. However the effect of thickness variation on the behavior of the shells is more complicated and the buckling strength of them is sensitive to the magnitude and shape of geometric imperfections. In this paper the effects of thickness variation and geometric imperfections on the buckling and postbuckling behavior of cylindrical shells are experimentally investigated. The obtained results are presented under the effect of uniform lateral pressure. It is found in this investigation that the buckling mode can be generated in the whole length of the shell, if the thickness variation is low.

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

Developments in composite construction and cellular beams

  • Lawson, R.M.;Hicks, S.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.193-202
    • /
    • 2005
  • This paper describes recent developments in composite construction and their effect on codified design procedures in the UK. Areas of particular interest include: rules on shear connection, design of beams with web openings, serviceability limits, such as floor vibrations, and fire safe design. The design of cellular beams with regular circular openings now includes generalized rules for web-post buckling, and for the development of in-plane moment in the web-post for asymmetric sections. Closed solutions for the maximum shear force due to limits on web-post bending or buckling are presented. The fire resistance of cellular beams is also dependent on the temperature of the web-post, and for closely spaced openings. It is necessary to increase the thickness of fire protection to the web. For serviceability design of beams, deflection limits and natural frequency and response factor for vibration are presented. It may be necessary to use stricter limits for certain applications.

Experimental determination of the buckling load of rectangular plates using vibration correlation technique

  • Singhatanadgid, Pairod;Sukajit, Padol
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.331-349
    • /
    • 2011
  • This study investigates the use of a vibration correlation technique (VCT) to identify the buckling load of a rectangular thin plate. It is proposed that the buckling load can be determined experimentally using the natural frequencies of plates under tensile loading. A set of rectangular plates was tested for natural frequencies using an impact test method. Aluminum and stainless steel specimens with CCCC, CCCF and CFCF boundary conditions were included in the experiment. The measured buckling load was determined from the plot of the square of a measured natural frequency versus an in-plane load. The buckling loads from the measured vibration data match the numerical solutions very well. For specimens with well-defined boundary conditions, the average percentage difference between buckling loads from VCT and numerical solutions is -0.18% with a standard deviation of 5.05%. The proposed technique using vibration data in the tensile loading region has proven to be an accurate and reliable method which might be used to identify the buckling load of plates. Unlike other static methods, this correlation approach does not require drawing lines in the pre-buckling and post-buckling regions; thus, bias in data interpretation is avoided.

A Study on the Variation of Post Buckling Behaviour of 2-dimensional Shallow Arch Truss after Size Optimization (크기최적화 이후에 나타나는 2차원 얕은 아치 트러스의 후 좌굴 거동의 변화에 대한 연구)

  • Lee, Sang-Jin;Lee, In-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.107-112
    • /
    • 2008
  • This paper investigates the variation of post-buckling behaviours of 2-dimensional shallow arch type truss after sizing optimization. The mathematical programming technique is used to produce the optimum member size of 2D arch truss against a central point load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of truss are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The postbuckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge change of post-buckling behaviour between the initial structure and optimum structure. Numerical results can be used as useful information for future research of large spatial structures.

  • PDF

Mechanical Characteristic Test of Architectural ETFE Film Membrane (크기최적화 이후에 나타나는 공간구조물의 후 좌굴 거동 변화에 대한 연구)

  • Lee, Sang-Jin;Jung, Ji-Myoung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.75-82
    • /
    • 2009
  • This paper investigates the variation of post-buckling behaviours of spatial structures after sizing optimization with linear assumptions. The mathematical programming technique is used to produce the optimum member size of spatial structures against external load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of structures are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The post-buckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge difference between the post buckling behaviours of the initial and optimized structures. Therefore, the stability of optimized spatial structures with linear assumption should be throughly checked by appropriate nonlinear analysis techniques. Finally, the present numerical results are provided as benchmark test suite for future study of large spatial structures.

  • PDF

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.