• Title/Summary/Keyword: positive surface charge

Search Result 107, Processing Time 0.027 seconds

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.

Fabrication of Photocatalyst Glass Beads Coated with TiO2 Thin Film by a Layer-by-Layer Process (LBL법에 의해 TiO2막이 코팅된 광촉매 글라스 비드 제조)

  • Lee, Ji-Sun;Chae, Yoo-Jin;Lee, Mi-Jai;Kim, Sei-Ki;Hwang, Jong-Hee;Lim, Tae-Young;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.379-383
    • /
    • 2012
  • $TiO_2$ thin films consisting of positively charged poly(diallyldimethylammonium chloride)(PDDA) and negatively charged titanium(IV) bis(ammonium lactato) dihydroxide(TALH) were successfully fabricated on glass beads by a layer-by-layer(LBL) self-assembly method. The glass beads used here showed a positive charge in an acid range and negative charge in an alkaline range. The glass beads coated with the coating sequence of(PDDA/TALH)n showed a change in the surface morphology as a function of the number of bilayers. When the number of bilayers(n) of the(PDDA/TALH) thin film was 20, Ti element was observed on the surface of the coated glass beads. The thin films coated onto the glass beads had a main peak of the (101) crystal face and were highly crystallized with XRD diffraction peaks of anatase-type $TiO_2$ according to an XRD analysis. In addition, the $TiO_2$ thin films showed photocatalytic properties such that they could decompose a methyl orange solution under illumination with UV light. As the number of bilayers of the(PDDA/TALH) thin film increased, the photocatalytic property of the $TiO_2$-coated glass beads increased with the increase in the thin film thickness. The surface morphologies and optical properties of glass beads coated with $TiO_2$ thin films with different coating numbers were measured by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD) and by UV-Vis spectrophotometry(UV-vis).

Recycling Water Treatment of Aquaculture by Using DynaSand Filter II. Effect of Coating on Removal of Bacteria and Virus in Sand Columns (상향류식 연속 역세 여과를 이용한 양어장 순환수 재리용 II. 여과사의 표면처리에 의한 세균 및 바이러스 처리율 검토)

  • 박종호;조규석;황규덕;김이오
    • Journal of Aquaculture
    • /
    • v.16 no.2
    • /
    • pp.76-83
    • /
    • 2003
  • To improve the efficiency of removal of bacteria and virus with DynaSand Filters used for treatment of recycling wastewater from aquaculture, effect of biofilm formation on bacterial transport through coated sand was estimated. At the neutral pH (pH 7.0), the coated sand was positive of zeta potential (surface charge). Column experiments were also carried out to test the effect of uncoated sand as well as coated sand with Al and Fe. The coated sand influenced more significantly the surface properties, adsorption and transport than the uncoated sand. The leaching batch system investigated for synthetic water showed concentrations of 7.47, 4.80, 20.89 and 7.23 mg/L for the uncoated sand, coated sand with Al, Fe and Al+Fe, respectively. Hence there are significant differences among the tested coatings with reference to bacterial transport and surface properties.

Improved Contact property in low temperature process via Ultrathin Al2O3 layer (Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상)

  • Jeong, Seong-Hyeon;Sin, Dae-Yeong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

Studies on the Surface Charge Characteristics and Some Physico-Chemical Properties of two Synthetic Iron Hydrous Oxides and one Aluminum Hydroxide Minerals (합성(合成) 수산화(水酸化) 철(鐵) 광물(鑛物)과 수산화(水酸化) 알루미늄 광물(鑛物)의 표면(表面) 전하(電荷) 및 물리화학적(物理化學的) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.147-154
    • /
    • 1984
  • Two Fe-hydrous oxide A,B and one Al-hydroxide minerals were synthesized precipitating Fe $Cl_3$ and $AlCl_3$ with alkali solution(NaOH) at pH 6.0, 12.0 and 4.5 respectively, for precise understanding of physico-chemical and surface charge characteristics of soils in which these minerals are dominant. Identification of these final products, effect of free and amorphous materials on X-ray diffraction analysis, particle size distribution and surface change characterics of these minerals were performed. Fe-hydroxide A and B were identified as great deal of X-ray amorphous material and as goethite with large amount of X-ray amorphous material, respectively. Dehydration by oven at $105^{\circ}C$ of these minerals exhibited akaganeite peaks with low X-ray amorphous hump and pure goethite peaks for Fe-hydroxide A and B, respectively. Both minerals, however, turned into hematite upon firing at $550^{\circ}C$. On the other hand, Al-hydroxide identified as mixture of gibbsite and bayerite of around 7:3 ratio. Application of sodium dithionite and ammonium oxalate solutions for removal of free or amorphous Fe and Al from these minerals revealed that only peak intensities of Al-hydroxide system were enhanced upon Al-extraction by oxalate solution even though dithionite solution was much powerful to extract Fe from Fe-hydrous oxide systems. Original(wet) Fe-hydrous oxide A has the highest specific surface and surface charge development(negative and positive), and the greatest amount of less than $2{\mu}m$ sized particles. Specific surface and clay sized particles(less than $2{\mu}m$) of Fe-hydrous oxide A, however, were drastically reduced upon dehydration($P_2O_5$ and oven drying) compare to the rest minerals. The Z.P.C. of these synthetic minerals were 8.0-8.5, 7.5-8.0 and 5.5-6.0 for Fe-hydrous oxide A, B and Al-hydroxide, respectively.

  • PDF

Development of Protein Chip for Diagnosis of Chlamydophia Pneumoniae (단백질 칩을 이용한 클라미디아 폐렴의 진단)

  • Kim, Woo Jin;Lee, Hui Young;Lee, Seung-Joon;Jung, Se-Hui;Yuk, Jong Seol;Ha, Kwon-Soo;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.412-418
    • /
    • 2006
  • Background; The diagnosis of chlamydial infection is based on serology. The current gold standard of diagnosis is MIF(microimmunofluorescence), but this modality is subjective and time-consuming. Protein microarray with using a SPR(surface plasmon resonance) sensor has recently been suggested as a method for detecting infection. For developing a protein chip to diagnose chlamydial infection, EBs(elementary bodies) were immobilized on a gold chip and the interaction between an antibody for Chlamydophila pneumoniae and the EBs(elementary bodies) immobilized on the surface of the gold chip was measured by using an SPR sensor. Methods; For the surface antigen, the EBs of Chlamydophila pneumoniae LKK1 were purified. Charged arrays were prepared by using PDDA(polydiallyldimethylammonium chloride) which has a positive charge. After immobilization of the chlamydial EBs on the PDDA surface, the investigation of the surface was done with using atomic force microscopy. After the antibody for C. pneumoniae was applied on chip, we monitored the SPR wavelength-shift to detect any antigen-antibody interaction with using a self-assembled SPR sensor. Results; The chlamydial EBs on the positively charged PDDA were visible on the surface with using atomic force microscopy. The SPR wavelength increased after interaction of antibody for C. pneumoniae with the EBs immobilized on charged gold surface. The wavelength-shift was correlated with the concentration of antigens. Conclusion; The surface immobilization of EBs on the gold surface with the charged arrays was identified and the antigen-antibody interaction on the gold chip was detected via the SPR sensor. Further investigations are needed to apply this technique to the clinical field.

The Rate Maxima and Hammett Correlation for the Nucleophilic Substitution (친핵성 치환반응에서 최대속도현상과 Hammett상관관계)

  • 성대동;임귀택
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.3
    • /
    • pp.172-183
    • /
    • 1995
  • The nucleophilic substitution reactions of p-substituted benzyl bromide with l-substituted N,N-dimethylanilines in methanol and acetonitrile binary solvent mixture which is known to an isodielectric solvent system kinetically and the results are as follows. The positive charge is developed on the reaction center of the substrate and it means that the bond cleavage is preceded more than bond formation in the transition state on the analogy of Hammett px values. The bond form3tlon is not progressed in the case of electron donating substituent of substrate. However, the bond formation is much developed in the case of electron withdrawing substituent of substrate on the analogy of Hammett py values. The nucleophilic attacking ability is shown a highest at 80% (V/V) methanol content and the bond formation is well progressed at the same methanol composition on the result of a cross interaction coefficient, pxy. The result of transition state structure that is applicated to the potential energy surface model is in accord with the result that Is applicated to the reaction susceptibilities. The reaction Is subject to the polarity-polarizability term more than the hydrogen bond donor acidity term by application to the solvatochromic parameter eouation.

  • PDF

A Review on Nanocomposite Based Electrical Insulations

  • Paramane, Ashish S.;Kumar, K. Sathish
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.239-251
    • /
    • 2016
  • The potential of nanocomposites have been drawing the intention of the researchers from energy storage to electrical insulation applications. Nanocomposites are known to improve dielectric properties, such as the increase in dielectric breakdown strength, suppressing the partial discharge (PD) as well as space charge, and prolonging the treeing, etc. In this review, different theories have been established to explain the reactions at the interaction zone of polymer matrix and nanofiller; the characterization methods of nanocomposites are also presented. Furthermore, the remarkable findings in the fields of epoxy, cross-linked polyethylene (XLPE), polypropylene and polyvinyl chloride (PVC) nanocomposites are reviewed. In this study, it was observed that there is lack of comparison between results of lab scale specimens and actual field aged cables. Also, non-standardization of the preparation methods and processing parameters lead to changes in the polymer structure and its surface degradation. However, on the positive side, recent attempt of 250 kV XLPE nanocomposite HVDC cables in service may deliver a promising performance in the coming years. Moreover, materials such as self-healing polymer nanocomposites may emerge as substitutes to traditional insulations.

Preparation and Mucoadhesive Test of CSA-loaded Liposomes with Different Characteristics for the Intestinal Lymphatic Delivery

  • Kim, Hyong-Ju;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.516-521
    • /
    • 2005
  • Drug delivery to the lymphatic system may be important in terms of the treatment with lymphatic involvement, such as tumor metastases and immunization. Especially, drug transport via the intestinal lymphatics after oral administration has been attracted lots of interests. The purpose of this study was to prepare cyclosporin A (CSA)-loaded liposomes, with different characteristics, and evaluate their mucoadhesivity. Three liposome preparations were formulated: cationic stearylamine liposomes (SA-Lip), anionic phosphatidylserine liposomes (PS-Lip), Polymer (chitosan)-coated liposomes (CS-Lip), and characterized. The liposome preparations were found to be spherical in shape, with PS-Lip being the smallest. The liposome preparations exhibited entrapment efficiencies in the order: PS-Lip $(52.5{\pm}2.9%)$ > SA-Lip $(48.8{\pm}3.3%)$ > CS-Lip $(41.7{\pm}4.2%)$. Finally, mucoadhesive tests were carried out using rat intestine, with SA-Lip (67%) showing the best adhesive rate of the three preparations (PS-Lip: 56%, CS-Lip: 61%). These results suggest that a positive charge on the surface of drug carriers may be an important factor for the intestinal drug delivery.

Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite (HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.