• 제목/요약/키워드: positioning control

검색결과 1,160건 처리시간 0.031초

A Study on The Actual Application of the Least Order Load Observer and Effective Online Inertia Identification Algorithm for High Performance Linear Motor Positioning System (고성능 선형전동기 위치제어 시스템에 대한 최소차원 부하관측기의 실제적 구현 및 이를 이용한 실시간 관성추정기의 구현)

  • Kim, Joohn-Sheok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제56권4호
    • /
    • pp.730-738
    • /
    • 2007
  • As well known when the linear machine is operated between two points repeatedly under positioning control, there are various positioning error at the moment of zero speed owing to the non-linear disturbance like as unpredictable friction force. To remove this positioning error, a simple least order disturbance observer is introduced and is actually implemented in this study. Due to this simple algorithm the over-all machine system can be modified to simple arbitrary given one-mass load without any disturbance. So, the total construction process for positioning control system is much easier than old one. Moreover, to generate a proper effective position profile with the limited actual machine force, a very powerful on-line mass identification algorithm using the load force estimator is presented. In the proposed mass identification algorithm, the exact load mass can be calculated during only one moving stage under a normally generated position profile. All presented algorithm is verified with experimental result with commercial linear servo machine system.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제13권6호
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

On Nanometer Positioning Control of Ultra-precision Hydrostatic Bearing Guided Feeding Table (초정밀 유정압 베어링 이송 테이블의 나노미터 위치결정 제어에 관한 연구)

  • Shim, Jongyoup;Park, Chun-Hong;Song, Chang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제30권12호
    • /
    • pp.1313-1320
    • /
    • 2013
  • An ultraprecision multi-axis machine tool has been designed and developed in our laboratory. The machine tool has four moving axes which are composed of three linear axes and one rotational axis. It has a gantry type structure and the Z-axis is on the X-axis and the C-axis, on which a workpiece is located, is inside the Y-axis. This paper shows control performance improving method and procedure for the ultra-precision positioning control of a hydrostatic bearing guided linear axis. Through improvements of electrical and mechanical components for the control system such as control electronics and oil pumping systems, the control disturbing noise is decreased. Also by the frequency domain analysis of control system those problem-making system components are identified and modified with analytical methods. The controller is analyzed and designed from frequency domain data and system information. In the experimental control results the nanometer order control result is successfully presented.

Improvement on the Vehicle Positioning Accuracy Using Differential Method for Vehicle Tracking (차량 추적 시스템에서 차분기법을 이용한 정밀도 향상에 관한 연구)

  • 장경일;이원우;길계환;김용윤;황춘식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • 제34S권1호
    • /
    • pp.16-25
    • /
    • 1997
  • This paper shows the development of the high accuracy vehicle positioning algorithm using the differential technique in vehicle tracking systems form the existing vehicle position which is acquired from the global positioning system (GPS). The control center receives the satellite ephemerise data and pseudorange correction from the reference station, and vehicle position from the moving vehicle. The pseudorange is calculated with the satellite position and the vehicle position, and corrected by pseudorange correction. Using this corrected pseudorange and kalman filter, more improved vehicle positioning data were obtained.

  • PDF

Development of Positioning Control System for Ship and Offshore using the DGPS (DGPS를 이용한 선박 및 해양작업선의 위치제어장치 개발)

  • Hong, Chung-You;Na, Guk-Hwan;Lee, Dong-Shin;Cho, Chul-Hee;Park, Byung-Ok;Choi, Hak-Sun;Park, Je-Woong;Kim, Ju-Nam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.260-265
    • /
    • 2003
  • Recently there are operating the Floating Vessel with the positioning control unit in ocean. This technology is not open to industrial society as exclusive one. In order to improve technical competition for its domestic product. It is required to develope the relevant product like above subject. This system consist of DGPS System, Unique Analysis, System Network, and Mooring System and so on. Accordingly Model/Field test were carried out to verify its Function / Performance for application of practical product. In this development, we have prepared the successful result to operate the speedy / accurate / stable unit as shown on this subject 'Development of Positioning Control System for Ship and Offshore using the DGPS'. And also it is expected to install this product for ship and offshore unit.

  • PDF

A Dual-mode Pico-positioning System using Active Aerostatic Coupling

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiro;Yabuya, Makoto;Tazoe, Yoichi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.32-37
    • /
    • 2007
  • This paper proposes a dual-mode ultra precision positioning system for machine tools and measuring machines. The objective was to position a machine table with a picometer order of resolution, i.e., pico-positioning. A twist-roller friction drive (TFD) was used in coarse-mode positioning. The TFD, which was driven by an AC servomotor, is a kind of lead screw in mechanical terms, and several centimeters of machine table movement was controlled with a nanometer order of positioning resolution. To eliminate lateral vibration caused by the TFD, an active aerostatic coupling driven by piezoelectric actuators was inserted between the TFD and the machine table. This active aerostatic coupling was also applied as a feed drive device for fine-mode positioning; in the fine mode, the positioning resolution was 50 pm. Factors influencing pico-positioning, such as how noise from displacement sensors and vibrations in the aerostatic guideway affect positioning resolution, are discussed.

Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships

  • Fang, Ming-Chung;Lee, Zi-Yi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.38-52
    • /
    • 2016
  • This paper describes the nonlinear dynamic motion behavior of a ship equipped with a portable dynamic positioning (DP) control system, under external forces. The waves, current, wind, and drifting forces were considered in the calculations. A self-tuning controller based on a neuro-fuzzy algorithm was used to control the rotation speed of the outboard thrusters for the optimal adjustment of the ship position and heading and for path tracking. Time-domain simulations for ship motion with six degrees of freedom with the DP system were performed using the fourth-order RungeeKutta method. The results showed that the path and heading deviations were within acceptable ranges for the control method used. The portable DP system is a practical alternative for ships lacking professional DP facilities.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.