• Title/Summary/Keyword: position sensing

Search Result 614, Processing Time 0.03 seconds

The Effects of Closed Kinetic and Open Kinetic Chain Exercises Using Knee Reposition Sense in Chronic Stroke Patients

  • Lee, Kyu-Young;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.3
    • /
    • pp.182-190
    • /
    • 2014
  • Purpose: This study aimed to determine the effects of open kinetic chain exercise (OKCE) and closed kinetic chain exercise (CKCE) using knee reposition sensing on balance, strength, and knee joint reposition sense (JPS) in chronic stroke patients. Methods: Twenty-nine hemiplegic patients participated in this study. Participants were randomly divided into 3 groups, CKCE, OKCE, and controls, with 9, 10, and 10 participants, respectively. The CKCE group completed CKCE using knee reposition sensing, whereas the OKCE group completed OKCE using knee reposition sensing. The control group completed conventional physical therapy. Results: Significant differences between the CKCE and OKCE groups were apparent for all outcomes except the functional reaching test. The CKCE group displayed significant improvements in knee JPS versus the OKCE and control groups (p<0.01). The OKCE group displayed significant improvements in knee extensor muscle strength versus the CKCE and control groups (p<0.05). The CKCE and OKCE groups displayed significantly improvements in static balance versus the control group (p<0.05). Conclusion: CKCE and OKCE improved balance, strength, and knee JPS. Additionally, CKCE might provide a more useful intervention benefit than OKCE for increasing knee JPS, a weight-bearing task. OKCE was sufficient to improve the knee extensor muscle strength.

Primary user localization using Bayesian compressive sensing and path-loss exponent estimation for cognitive radio networks

  • Anh, Hoang;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2338-2356
    • /
    • 2013
  • In cognitive radio networks, acquiring the position information of the primary user is critical to the communication of the secondary user. Localization of primary users can help improve the efficiency with which the spectrum is reused, because the information can be used to avoid harmful interference to the network while simultaneity is exploited to improve the spectrum utilization. Despite its inherent inaccuracy, received signal strength based on range has been used as the standard tool for distance measurements in the location detection process. Most previous works have employed the path-loss propagation model with a fixed value of the path loss exponent. However, in actual environments, the path loss exponent for each channel is different. Moreover, due to the complexity of the radio channel, when the number of channel increases, a larger number of RSS measurements are needed, and this results in additional energy consumption. In this paper, to overcome this problem, we propose using the Bayesian compressive sensing method with a calibrated path loss exponent to improve the performance of the PU localization method.

Ion Migration Characteristics of a High Voltage Rotary Spark Airgap (고전압 회전 스파크 공격간의 이온 이동특성)

  • Moon Jae-Duk;Kim Tai-Hoon;Hwang Deok-hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.427-432
    • /
    • 2005
  • Ion migration characteristics of a rotary spark airgap of high voltage Pulse generator had been investigated. It was considered that the ion migration speed and the ions of the gases(atmosphere gases, $O_2,\;N_2,,\;and\;H_{2}O,\;etc$.) and the charged very fine particles(about $10\~100nm$ size) migrated through the upper stator ball and bottom stator ball of the rotary spark airgap would determined the rise and fall times of the output high voltage pulse. In this paper, a basic study on the ion migration characteristics of the rotary spark airgap between the spark stator ball and the ion-sensing electrode of the proposed high voltage pulse generator have been investigated experimentally. As a result, the three kinds of ion speeds were detected by the ion-sensing electrode installed at the position of the bottom stator ball of the ball type sparkgap high voltage pulse generator. The migration velocities, diameters, masses, charges, numbers of the ions and particles were obtained by experiments and calculations, which, however, would determine the rise and fall times of the output high voltage pulse.

Visual Sensing of the Light Spot of a Laser Pointer for Robotic Applications

  • Park, Sung-Ho;Kim, Dong Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • In this paper, we present visual sensing techniques that can be used to teach a robot using a laser pointer. The light spot of an off-the-shelf laser pointer is detected and its movement is tracked on consecutive images of a camera. The three-dimensional position of the spot is calculated using stereo cameras. The light spot on the image is detected based on its color, brightness, and shape. The detection results in a binary image, and morphological processing steps are performed on the image to refine the detection. The movement of the laser spot is measured using two methods. The first is a simple method of specifying the region of interest (ROI) centered at the current location of the light spot and finding the spot within the ROI on the next image. It is assumed that the movement of the spot is not large on two consecutive images. The second method is using a Kalman filter, which has been widely employed in trajectory estimation problems. In our simulation study of various cases, Kalman filtering shows better results mostly. However, there is a problem of fitting the system model of the filter to the pattern of the spot movement.

Estimation of rice growth parameters by X-band radar backscattering data

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.324-327
    • /
    • 2008
  • Microwave remote sensing has great potential, especially in monsoon Asia, since optical observations are often hampered by cloudy conditions. The radar backscattering characteristics of rice crop were investigated with a ground-based automatic scatterometer system. The system was installed inside a shelter in an experimental paddy field at the National Institute of Agricultural Science and Technology (NIAST) before transplanting. The rice cultivar was a kind of Japonica type, called Chuchung. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables, and a personal computer that controls frequency, polarization and data storage. This system automatically measures fully-polarimatric backscattering coefficients of rice crop every 10 minutes, accompanied by a digital camera that takes pictures in a fixed position with the same interval. The backscattering coefficients were calculated by applying a radar equation. Plant variables, such as leaf area index (LAI), biomass, plant height and weather conditions were measured periodically throughout the rice growth season. We have performed polarimetric decomposition of paddy data such as single, double and volume scattering to extract the scattering information effectively. We investigated the relationships between backscattering coefficients and the plant variables.

  • PDF

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

A Simulation Study on the Use of GPS Signals to Infer 3-D Atmospheric Wet Refractivity Structure

  • Chiang, Chen-Ching;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1021-1023
    • /
    • 2003
  • Atmospheric water vapor is a key variable in numerical weather prediction (NWP) models, but it is a crucial factor to limit the accuracy of high-precision GPS positioning technique. For both issues, knowledge about the amount of water vapor is extremely important. In this study, we perform a simulation study to utilize GPS signals through a developed tomographic scheme to retrieve 3D structure of atmospheric wet refractivity, which may be assimilated into NWP models for advancing forecasting or position calculation for improving GPS positioning accuracy. For the purpose of knowing the absolute accuracy of the developed tomographic method, a well-defined temporal and spatial varying state of atmospheric profile is utilized. Under such circumstance, several factors that may influence the retrievals can be easily examined and their impacts may be clearly quantified. They include the values of the positional dilution of precision (PDOP) factors of the GPS signals, ... etc. Based upon the use of a variety spectrum of adjustable factors, many interesting findings are obtained. For example, the more is the number of the observed GPS signals the better becomes the retrievals as expected. Also, the smaller is the PDOP value the better becomes the retrievals.

  • PDF

MCNP-polimi simulation for the compressed-sensing based reconstruction in a coded-aperture imaging CAI extended to partially-coded field-of-view

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.199-207
    • /
    • 2021
  • This paper deals with accurate image reconstruction of gamma camera using a coded-aperture mask based on pixel-type CsI(Tl) scintillator coupled with silicon photomultipliers (SiPMs) array. Coded-aperture imaging (CAI) system typically has a smaller effective viewing angle than Compton camera. Thus, if the position of the gamma source to be searched is out of the fully-coded field-of-view (FCFOV) region of the CAI system, artifacts can be generated when the image is reconstructed by using the conventional cross-correlation (CC) method. In this work, we propose an effective method for more accurate reconstruction in CAI considering the source distribution of partially-coded field-of-view (PCFOV) in the reconstruction in attempt to overcome this drawback. We employed an iterative algorithm based on compressed-sensing (CS) and compared the reconstruction quality with that of the CC algorithm. Both algorithms were implemented and performed a systematic Monte Carlo simulation to demonstrate the possiblilty of the proposed method. The reconstructed image qualities were quantitatively evaluated in sense of the root mean square error (RMSE) and the peak signal-to-noise ratio (PSNR). Our simulation results indicate that the proposed method provides more accurate location information of the simulated gamma source than the CC-based method.

Residual error selecting method for precise geometric correction

  • Kim, Myoung-Sun;Ohno, Yasuo;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.3-7
    • /
    • 1999
  • The images of the meteorological satellite NOAA contain geometrical distortions caused by its ambiguous position, its vibration, its sensor's movement, and so on. Geometric correction of satellite images is one of the most important parts in many remote sensing as the primary processing. Ground control points (GCP's) are necessary to check the accuracy of geometric correction and used for precise geometric correction. In this paper, a method for automatically selecting the residual error is presented. Calculating the effective angle and residual errors vector using the succeeded matching GCP's, precise geometric correction using an affine transformation is applied to systematically a corrected image. And the error is decreased by an affine transformation. The above enable the geometric correction of high quality.

  • PDF

A Study on the Measurement Characteristics of Cylindrical Type Capacitive Transducers to the Roundness Errors of Rotor for Magnetic Bearing (자기베어링용 로우터의 형상 오차에 대한 실린더형 캐패시턴스 센서의 측정특성에 관한 연구)

  • Lee, S.H.;Jung, S.C.;Han, D.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.23-31
    • /
    • 1995
  • The sending characteristics of the non-contact type displacement transducers can affect the performances of the magnetic bearing systems when they support the rotating shaft. The probe type displacement sensor detects not only the displacement of the rotor at the sensing position but also the surface irregularitis of the rotor such as surface roughnessand roundness errors. If there exist such measuring errors, the magnetic bearing can not apply proper force against the rotor displacements for the detected signal is the input to the magnetic bearing controllers. The cylindrical shape capacitive transducer can detect the rotor displacement by the integral sum of the charges which are formed between the sensor plates and rotor so that it can reduce the detecting errors induced by the surface irregularities of the rotor. By theore- tical analysis, we compared the sensing characteristics of the cylindrical shape capacitive transducers for the rotors that have some sinusoidal irregularities with that of the ideal probe type displacement transducers.

  • PDF