• Title/Summary/Keyword: position calibration

Search Result 448, Processing Time 0.03 seconds

A Study on the Camera Calibration Using Lens Distortion Model (렌즈의 왜곡 모델을 이용한 카메라 보정에 관한 연구)

  • Dong Min Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.56-68
    • /
    • 1994
  • The objective of camera calibration is to determine the internal optical characteristics of camera and the three-dimensional position and orientation of camera with respect to the real world. Calibration procedure for computer vision should be automatical, accurate and applicable to general purpose cameras and lenses. In this paper, we present camera calibration method which meets the above requirements. The algorithm is based on the two-stage method which takes into account lens distortion in the second stage. In this paper, the overdetermined nonlinear system is established in terms of the constraints to all directions and our calibration algorithm is proposed which is constructed by using Marquardt iterations and our calibration algorithm is proposed which is constructed by using Marquardt iteration method in solving nonlinear equations. Experimental results indicate that lens distortion should be taken into consideration for the calibration of the general-purpose lens. With 24 calibration points acquired out of 512$\times$512 image, the proposed algorithm came up with average error of less than 1 pixel and showed a higher accuracy over the conventional two-stage method.

  • PDF

악조건하의 비동일평면 카메라 교정을 위한 알고리즘

  • Ahn, Taek-Jin;Lee, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1001-1008
    • /
    • 2001
  • This paper presents a new camera calibration algorithm for ill-conditioned cases in which the camera plane is nearly parallel to a set of non-coplanar calibration boards. for the ill-conditioned case, most of existing calibration approaches such as Tsais radial-alignment-constraint method cannot be applied. Recently, for the ill-conditioned coplanar calibration Lee&Lee[16] proposed an iterative algorithm based on the least square method. The non-coplanar calibration algorithm presented in this paper is an iterative two-stage procedure with extends the previous coplanar calibration algorithm. Through the first stage, camera, position and orientation parameters as well as one radial distortion factor are determined optimally for a given data of the scale factor and the focal length. In the second stage, the scale factor and the focal length are locally optimized. This process is repeated until any improvement cannot be expected any more Computational results are provided to show the performance of the algorithm developed.

  • PDF

User-Calibration Free Gaze Tracking System Model (사용자 캘리브레이션이 필요 없는 시선 추적 모델 연구)

  • Ko, Eun-Ji;Kim, Myoung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1096-1102
    • /
    • 2014
  • In remote gaze tracking system using infra-red LEDs, calibrating the position of reflected light is essential for computing pupil position in captured images. However, there are limitations in reducing errors because variable locations of head and unknown radius of cornea are involved in the calibration process as constants. This study purposes a gaze tracking method based on pupil-corneal reflection that does not require user-calibration. Our goal is to eliminate the correction process of glint positions, which require a prior calibration, so that the gaze calculation is simplified.

A Visual Calibration Scheme for Off-Line Programming of SCARA Robots (스카라 로봇의 오프라인 프로그래밍을 위한 시각정보 보정기법)

  • Park, Chang-Kyoo;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.62-72
    • /
    • 1997
  • High flexibility and productivity using industrial robots are being achieved in manufacturing lines with off-line robot programmings. A good off-line programming system should have functions of robot modelling, trajectory planning, graphical teach-in, kinematic and dynamic simulations. Simulated results, however, can hardly be applied to on-line tasks until any calibration procedure is accompained. This paper proposes a visual calibration scheme in order to provide a calibration tool for our own off-line programming system of SCARA robots. The suggested scheme is based on the position-based visual servoings, and the perspective projection. The scheme requires only one camera as it uses saved kinematic data for three-dimensional visual calibration. Predicted images are generated and then compared with camera images for updating positions and orientations of objects. The scheme is simple and effective enough to be used in real time robot programming.

Camera Calibration for Machine Vision Based Autonomous Vehicles (머신비젼 기반의 자율주행 차량을 위한 카메라 교정)

  • Lee, Mun-Gyu;An, Taek-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.803-811
    • /
    • 2002
  • Machine vision systems are usually used to identify traffic lanes and then determine the steering angle of an autonomous vehicle in real time. The steering angle is calculated using a geometric model of various parameters including the orientation, position, and hardware specification of a camera in the machine vision system. To find the accurate values of the parameters, camera calibration is required. This paper presents a new camera-calibration algorithm using known traffic lane features, line thickness and lane width. The camera parameters considered are divided into two groups: Group I (the camera orientation, the uncertainty image scale factor, and the focal length) and Group II(the camera position). First, six control points are extracted from an image of two traffic lines and then eight nonlinear equations are generated based on the points. The least square method is used to find the estimates for the Group I parameters. Finally, values of the Group II parameters are determined using point correspondences between the image and its corresponding real world. Experimental results prove the feasibility of the proposed algorithm.

Study on the Identifiable Parameters and Optimum Postures for Calibrating Parallel Manipulators (병렬구조 로봇의 보정을 위한 보정 가능 변수 판별과 최적 자세 선정에 관한 연구)

  • Park, Jong-Hyuck;Kim, Sung-Gaun;Rauf, Abdul;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1476-1481
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type parallel manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

Accuracy Improvement of a 5-axis Hybrid Machine Tool (5축 혼합형 공작기계의 정밀도 향상 연구)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.

Restoration of Realtime Three-Dimension Positions Using PSD Sensor (PSD센서를 이용한 실시간 3차원 위치의 복원)

  • Choi, Hun-Il;Jo, Yong-Jun;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.507-510
    • /
    • 2003
  • In this paper, optical sensor system using PSD(Position Sensitive Detection) is proposed to obtain the three dimensional position of moving markers attached to human body. To find the coordinates of an moving marrer with stereo vision system, two different sight rays of an moving marker are required. Usually, those are acquired with two optical sensors synchronized at the same time. PSD sensor is used to measure the position of an incidence light in real-time. To get the three-dimension position of light source on moving markers, a conventional camera calibration method are used. In this research, we realized a low cost motion capture system. The proposed system shows high three-dimension measurement accuracy and fast sampling frequency.

  • PDF

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

Calibration of gimballed inertial navigation systems using state estimation (상태변수 추정을 이용한 김발형 관성항법시스템의 교정기법에 대한 연구)

  • Kim, Gap-Jin;Song, Taek-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.62-67
    • /
    • 1998
  • Gimballed Inertial Navigation Systems(GINS) are sophisticated autonomous electro-mechanical systems which supply the position, velocity and attitude of the vehicle on which they are mounted. In order to maintain accuracy of outputs, the GINS are required to regularly calibrate senior errors. However, existing calibration methods take up a long time due to multiposition alignments needed to increase accuracy. A particular system formulation for calibration of a GINS is proposed to enhance system observability and thus to expedite calibration procedure. Performance of the proposed calibration method is compared with existing methods such as Schuler test and muliposition alignment. Simulation studies show the proposed system formulation associated with a suggested suboptimal filter is accurate as well as efficient in error identification essential to GINS calibration.

  • PDF