현재 영상감시 시스템에서 얼굴 인식을 통한 사람의 신원 확인은 정면 얼굴이 아닌 관계로 매우 어려운 기술에 속한다. 일반적인 사람들의 얼굴 영상과 입력된 얼굴 영상을 비교하여 유사도를 파악하고 신원을 확인 하는 기술은 각도의 차이에 따라 정확도의 오차가 심해진다. 이런 문제를 해결하기 위해 본 논문에서는 POSIT을 사용하여 얼굴 포즈 측정을 하고, 추정된 각도를 이용하여 3D 얼굴 영상을 제작 후 매칭 하여 일반적인 정면 영상끼리의 매칭이 아닌 rotated face를 이용한 매칭을 해보기로 한다. 얼굴을 매칭 하는 데는 상용화된 얼굴인식 알고리즘을 사용하였다. 얼굴 포즈 추정은 $10^{\circ}$이내의 오차를 보였고, 얼굴인증 성능은 약 95% 정도임을 확인하였다.
사람의 얼굴은 강체(Rigid object)가 아니기 때문에 얼굴을 추적하거나 인식하는 일은 쉽지 않다. 특히 얼굴의 포즈나 주변 조명의 변화에 따른 입력 영상의 차이는 얼굴 인식을 어렵게 하는 주된 원인이다. 본 논문에서는 비디오 영상으로부터 얼굴을 추적하고 인식할 때 발생하는 이 두 가지의 문제를 해결하기 위한 프레임웍과 전처리 방법을 제안한다. 얼굴 포즈의 변화에도 효과적으로 얼굴을 추적 및 인식하기 위해 먼저 학습 영상으로부터 주성분 분석법(Principal Component Analysis)을 이용하여 각 얼굴 포즈마다 하나의 독립된 가우시안 분포를 추정하고 이를 이용하여 각 사람마다 가우시안 혼합 모델(Gaussian Mixture Model)을 구성한다. 본 논문에서는 서로 다른 조명 상태를 가진 얼굴 영상을 처리하기 위해 먼저 입력된 얼굴 영상을 SSR(Single Scale Retinex) 모델을 이용하여 반사율(Reflectance)과 조도(Illuminance)로 분해한다. 반사율은 사전 정의된 범위 안에서 히스토그램 평활화를 수행함으로써 재조정되고 조도는 조명의 변화를 포함하고 있지 않은 영상들으로부터 학습된 매니폴드 모델로 다시 근사된다. 이 두 특징을 결합함으로써 실내 환경이나 실외 환경에서 촬영된 영상에서 효율적으로 얼굴을 추적 및 인식한다. 비디오 기반의 영상으로부터 보다 효율적으로 얼굴을 추적하기 위해 본 논문에서는 구성된 모델의 가중치를 각 프레임마다 이전 프레임의 추적 결과에 의해 EM 알고리즘을 이용하여 갱신함으로써 비디오 영상내의 연속적으로 변화하는 얼굴 포즈를 추정하였다. 본 논문에서 제안된 방법은 실내에서의 다양한 조명환경과 실외의 여러 장소에서 획득한 실험 영상을 이용하여 기존에 연구되어 온 다른 방법에 비해 우수한 성능을 보였다.
We present an approach to detect real plane for line base recognition and pose estimation Given 3D line segments, we set up reference plane for each line pair and measure the normal distance from the end point to the reference plane. And then, normal distances are measured between remains of line endpoints and reference plane to decide whether these lines are coplanar with respect to the reference plane. After we conduct this coplanarity test, we initiate visibility test using z-buffer value to prune out ambiguous planes from reference planes. We applied this algorithm to real images, and the results are found useful for evidence fusion and probabilistic verification to assist the line based recognition as well as 3D pose estimation.
본 논문은 Active Appearance Model(AAM)을 사용하여 주어진 얼굴영상의 포즈추정과 임의 포즈합성 방법을 설명한다. AAM은 다양한 응용분야에 성공적으로 적용되어지고 있는 예제기반 학습모델로 예제들의 변화정도를 학습한다. 그러나 하나의 모델로는 각도 변화가 큰 포즈 변화량을 수용하기 어렵다. 본 논문은 좁은 범위의 각도 변화를 다루는 모델을 포즈별로 생성한다. 주어진 포즈 얼굴을 다룰 수 있는 모델을 이용하여 정확한 포즈추정과 합성이 가능하다. 이때 합성하고자 하는 포즈의 각도가 포즈 추정을 위해 사용된 모델에 학습되어 있지 않은 경우, 미리 학습된 모델간의 선형관계를 통해 문제를 해결한다. Yale B 공개 얼굴 데이터베이스에 대한 실험을 통해 포즈추정 및 합성 정확도를 보이고, 자체 수집한 포즈변화가 큰 얼굴영상에 대한 성공적인 정면 합성 결과를 제시한다.
본 논문에서는 신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처를 인식하는 방법을 제안한다. 제스처는 순차적인 포즈로 구성되어 있기 때문에, 제스처를 인식하기 위해서는 시계열 포즈를 획득하는 것에 중점을 두고 있어야 한다. 하지만 인간의 포즈는 자유도가 높고 왜곡이 많기 때문에 포즈를 정확히 인식하는 것은 쉽지 않은 일이다. 그래서 본 논문에서는 신체의 전신 포즈를 사용하지 않고 포즈 특징을 정확히 얻기 위해 부분 포즈를 사용하였다. 본 논문에서는 16개의 제스처를 정의하였으며, 학습 영상으로 사용하는 깊이 영상 포즈렛은 정의된 제스처를 바탕으로 생성하였다. 본 논문에서 제안하는 깊이 영상 포즈렛은 신체 부분의 깊이 영상과 해당 깊이 영상의 주요 3차원 좌표로 구성하였다. 학습과정에서는 제스처를 학습하기 위하여 깊이 카메라를 이용하여 정의된 제스처를 입력받은 후, 3차원 관절 좌표를 획득하여 깊이 영상 포즈렛이 생성되었다. 그리고 깊이 영상 포즈렛을 이용하여 부분 제스처 HMM을 구성하였다. 실험과정에서는 실험을 위해 깊이 카메라를 이용하여 실험 영상을 입력받은 후, 전경을 추출하고 학습된 제스처에 해당하는 깊이 영상 포즈렛을 비교하여 입력 영상의 신체 부분을 추출한다. 그리고 HMM을 적용하여 얻은 결과를 이용하여 제스처 인식에 필요한 부분 제스처를 확인한다. 부분 제스처를 이용한 HMM을 이용하여 효과적으로 제스처를 인식할 수 있으며, 관절 벡터를 이용한 인식률은 약 89%를 확인할 수 있었다.
본 논문에서는 다관절체 추적을 위해 기존에 물체 추적에 자주 이용되는 파티클 필터를 확장한 계층적 파티클 필터 방법을 제안한다. 칼라 특징은 부분 겹침, 회전등에 강건한 특징을 가지고 있어서, 칼라 기반 파티클 필터는 물체 추적에 널리 쓰이고 있다. 다관절체 추적에서 상태 벡터는 높은 차원을 가지기 때문에 기존의 파티클 필터를 이용해 바람직한 추적 결과를 얻기 위해서는 많은 수의 샘플이 요구된다. 이러한 문제점을 해결하기 위해, 본 논문에서는 이미 알고 있는 다른 신체 부위의 위치를 이용해 계층적으로 신체 부위를 추적한다. 계층적 추적 방법에 의해 복잡한 환경에서 강건한 추적을 위한 샘플의 수를 줄일 수 있었다. 또한 포즈를 인식하기 위해 상박과 하박의 각도를 이용한 SVM(Support Vector Machine)을 이용해 8개의 포즈를 분류한다. 실험 결과는 세안한 방법이 기존의 칼라 기반의 파티클 필터보다 효율적임을 보여준다.
In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.
In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.
본 논문에서는 임의의 장면에도 얼굴 인식에 영향을 받지 않는 통합된 얼굴 인식 방법을 제안한다. 크기 정규화는 피부 색 분할과 log-poler 매핑 절차의 새로운 조합을 통하여 얻어지고, 주요 얼굴 구성 요소 분석은 자세 변화들을 처리하기 위하여 제안된 멀티 뷰 접근을 통해 이루어진다. 주어진 컬러 입력 이미지로부터 검출기는 얼굴을 원형 경계 안에 둘러싸고 코의 위치를 표시하며 다음 인식을 위해, 원형 경계 내에 배치하는 방사형 격자는 특징 벡터 코 중심에 두었다. 컬러로 분할된 영역의 폭으로서 얼굴의 크기를 평가하고, 추출된 특징 벡터는 평가된 크기에 의하여 정규화된 크기이다. 특징 벡터는 얼굴 인식을 위해 훈련된 신경망 분류자에게 입력된다. 시스템은 서로 다른 복합적인 배경에서 다양한 크기와 자세를 가진 20명의 얼굴 데이터 베이스를 사용하여 실험한 결과 얼굴 인식기의 수행능력은 매우 작은 크기의 얼굴 이미지 외에는 87%에서 92%의 평균 인식율을 얻을 수 있었다.
본 논문에서는 제스처 인식 대형 놀이 시스템을 기반으로한 한자 학습 콘텐츠에 대해 제안한다. 제안한 시스템은 두 대의 적외선 영상에서 사용자의 포즈를 예측하는 부분과 연속된 포즈들로부터 제스처를 인식하는 부분으로 구성되어 있다. 그리고 각각의 적외선 카메라에서 하나의 포즈에 대한 정면 포즈와 옆면 포즈로 나눠서 획득한 후 이를 사용하여 HMM의 모델을 이용하여 제스처를 분류하였다. 사용자와 컴퓨터간 의사소통에 있어서, 장치를 사용하지 않고 사용자의 행동에 의한 조작을 통해 사용자가 쉽게 조작할 수 있고 편리함을 제공하였다. 또한 두 개의 대형 디스플레이와 다양한 멀티미디어 요소를 이용하여 몰입과 흥미를 유발시킬 수 있기 때문에 정보 전달을 극대화할 수 있다. 단순한 주입식 교육 콘텐츠가 아닌 에듀테인먼트 콘텐츠인 한자 학습 콘텐츠는 게임과 교육을 동시에 제공하여 사용자에게 재미와 흥미를 주어 자연스레 한자를 습득할 수 있고 제스처 기반 대형 놀이 시스템과 결합하면서 사용자에게 놀면서 배울 수 있는 시너지 효과를 기대할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.