The Journal of Asian Finance, Economics and Business
/
v.7
no.9
/
pp.105-115
/
2020
The study empirically examines the effects of loan portfolio diversification on bank risk and return in the nascent banking market of Vietnam. Loan portfolio diversification is captured through the Hirschman-Herfindahl index and the Shannon Entropy with sectoral exposures. We access each bank's financial reports to collect the required data, especially the breakdown of sectoral loan portfolios, thus constituting a unique dataset. To compute bank return, we use the traditional accounting indicators, including return-on-assets, return-on-equity, and net-interest margin. For bank risk, we utilize the loan-loss provisions and non-performing loans relative to gross customer loans. Using a sample of 30 commercial banks over the period from 2008 to 2019 and the system generalized method of moments estimator for the dynamic panel, we indicate the downsides of portfolio diversification. Concretely, we observe that all diversification measures exhibit significantly negative signs in all regressions across different bank return proxies. At the same time, the estimates display the significant and positive impact of diversification on the non-performing loan ratio. Hence, sectoral loan portfolio diversification significantly hampers bank performance in both aspects of lower return and higher credit risk. The results are robust across a rich set of bank performance and portfolio diversification measures.
The Journal of Asian Finance, Economics and Business
/
v.8
no.5
/
pp.839-850
/
2021
Risk-adjusted return is believed to be one of the optimal parameters to determine an optimum portfolio. A risk-adjusted return is a calculation of the profit or potential profit from an investment that takes into account the degree of risk that must be accepted to achieve it. This paper presents a new procedure in portfolio selection and utilizes these results to optimize the risk level of risk-adjusted Islamic stock portfolios. It deals with the weekly close price of active issuers listed on Jakarta Islamic Index Indonesia for a certain time interval. Overall, this paper highlights portfolio selection, which includes determining the number of stocks, grouping the issuers via technical analysis, and selecting the best risk-adjusted return of portfolios. The nominated portfolio is modeled using Quadratic Programming (QP). The result of this study shows that the portfolio built using the lowest Value at Risk (VaR) outperforms the market proxy on a risk-adjusted basis of M-squared and was chosen as the best portfolio that can be optimized using QP with a minimum risk of 2.86%. The portfolio with the lowest beta, on the other hand, will produce a minimum risk that is nearly 60% lower than the optimal risk-adjusted return portfolio. The results of QP are well verified by a heuristic optimizer of fmincon.
Journal of the Korean Operations Research and Management Science Society
/
v.34
no.4
/
pp.153-163
/
2009
Unlike the mean-variance approach, the stochastic dominance approach is to form a portfolio that stochastically dominates a predetermined benchmark portfolio such as KOSPI. This study is to search a set of portfolio weights for the first-order stochastic dominance with maximum expected return by managing the constraint set and the objective function separately. A nonlinear programming algorithm was developed and tested with promising results against Korean stock market data sets.
Purpose - This study empirically investigates whether the risk property included in fat-tails of return distributions is systematic or unsystematic based on the devised statistical methods. Design/methodology/approach - This study devised empirical designs based on two traditional methods: principal component analysis (PCA) and the testing method of portfolio diversification effect. The fatness of the tails in return distributions is quantitatively measured by statistical probability. Findings - According to the results, the risk property in the fat-tails of return distributions has the economic meanings of eigenvalues having a value greater than 1 through PCA, and also systematic risk that cannot be removed through portfolio diversification. In other words, the fat-tails of return distributions have the properties of the common factors, which may explain the changes of stock returns. Meanwhile, the fatness of the tails in the portfolio return distributions shows the asymmetric relationship of common factors on the tails of return distributions. The negative tail in the portfolio return distribution has a much closer relation with the property of common factors, compared to the positive tail. Research implications or Originality - This empirical evidence may complement the existing studies related to tail risk which is utilized in pricing models as a common factor.
Journal of Korean Institute of Industrial Engineers
/
v.39
no.6
/
pp.535-545
/
2013
The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.
This paper investigated performance of the Markowitz's portfolio selection model with applications to Korean stock market. We chose Samsung-Group-Funds and KOSPI index for performance comparison with the Markowitz's portfolio selection model. For the most recent one and a half year period between March 2007 and September 2008, KOSPI index almost remained the same with only 0.1% change, Samsung-Group-Funds showed 20.54% return, and Markowitz's model, which is composed of the same 17 Samsung group stocks, achieved 52% return. We performed sensitivity analysis on the duration of financial data and the frequency of portfolio change in order to maximize the return of portfolio. In conclusion, according to our empirical research results with Samsung-Group-Funds, investment by Markowitz's model, which periodically changes portfolio by using nonlinear programming with only financial data, outperformed investment by the fund managers who possess rich experiences on stock trading and actively change portfolio by the minute-by-minute market news and business information.
The Journal of Asian Finance, Economics and Business
/
v.8
no.2
/
pp.57-64
/
2021
This research attempts to formulate a new mean-risk model to replace the Markowitz mean-variance model by altering the risk measurement using ARCH variance instead of the original variance. In building the portfolio, samples used are closing prices of Indonesia Composite Stock Index and Indonesia Composite Bonds Index from 2013 to 2018. This study is a qualitative study using secondary data from the Indonesia Stock Exchange and Indonesia Bonds Pricing Agency. This research found that Markowitz's model is still superior when utilized in daily data, while the mean-ARCH model is appropriate with wider gap data like monthly observation. The Historical return has also proven to be more appropriate as a benchmark in selecting an optimal portfolio rather than a risk-free rate in an inefficient market. Therefore Mean-ARCH is more appropriate when utilized under data that have a wider gap between the period. The research findings show that the portfolio combination produced is inefficient due to the market inefficiency indicated by the meager return of the stock, while bears notable standard deviation. Therefore, the researcher of this study proposed to replace the risk-free rate as a benchmark with the historical return. The Historical return proved to be more realistic than the risk-free rate in inefficient market conditions.
Criteria for the comparison of quality of asset portfolio management are risk and return. In this paper a method to use structural time-series model to determine an optimal portfolio for the improvement of quality of asset portfolio management is suggested. In traditional mean variance analysis expected return is assumed to be time-invariant. However, it is more realistic to assume that expected return is temporally dynamic and structural time-series model can be used to reflect time-varying nature of return. A data set from an insurance company was used to show validity of suggested method.
Journal of the Korean Operations Research and Management Science Society
/
v.38
no.4
/
pp.35-52
/
2013
Markowitz's portfolio selection model is used to construct an optimal portfolio which has minimum variance, while satisfying a minimum required expected return. The model uses estimators based on analysis of historical data to estimate the returns, standard deviations, and correlation coefficients of individual stocks being considered for investment. However, due to the inaccuracies involved in estimations, the true optimality of a portfolio constructed using the model is questionable. To investigate the effect of estimation inaccuracy on actual portfolio performance, we study the changes in a portfolio's realized return and standard deviation as the accuracy of the estimations for each stock's return, standard deviation, and correlation coefficient is increased. Furthermore, we empirically analyze the portfolio's performance by comparing it with the performance of active mutual funds that are being traded in the Korean stock market and the KOSPI benchmark index, in terms of portfolio returns, standard deviations of returns, and Sharpe ratios. Our results suggest that, among the three input parameters, the accuracy of the estimated returns of individual stocks has the largest effect on performance, while the accuracy of the estimates of the standard deviation of each stock's returns and the correlation coefficient between different stocks have smaller effects. In addition, it is shown that even a small increase in the accuracy of the estimated return of individual stocks improves the portfolio's performance substantially, suggesting that Markowitz's model can be more effectively applied in real-life investments with just an incremental effort to increase estimation accuracy.
Proceedings of the Korean Operations and Management Science Society Conference
/
2007.11a
/
pp.134-137
/
2007
Unlike the mean-variance approach, the stochastic dominance approach is to form a portfolio that stochastically dominates a predetermined benchmark portfolio such as KOSPI. This study is to search a set of portfolio weights for the first degree stochastic dominance with maximum expected return by managing the constraint set and the objective function separately. An algorithm was developed and tested with promising results against Korean stock market data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.