• Title/Summary/Keyword: portal frame

Search Result 57, Processing Time 0.024 seconds

Analysis of the visual trajectory of the wire frame of the major web portal sites (국내 주요 포털사이트의 와이어 프레임에 대한 시각궤적의 분석)

  • Ha, Jong Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.382-385
    • /
    • 2016
  • 본 연구는 포털사이트의 효율적이고 경험 디자인(User Experience Design : UX 디자인)적 설계가 가능하도록 제작하기 위하여 와이어 프레임에 대한 사용자의 시각궤적과 주시빈도를 확인한다. 국내 주요 포털 사이트를 점유비율에 따라 세 가지를 제시하고 로고의 유무에 따른 와이어 프레임을 제작하여 각 사이트의 화면분할과 정보영역을 분석한다. 시선추적 장치를 통해 총 6가지 와이어 프레임의 시각궤적 및 주시빈도를 확인하여 시선이 머무는 히트맵을 제시한다. 이를 통해 웹사이트의 디자인 설계시 페이지나 화면에 보이는 요소들의 효율적 배치를 위한 주시영역을 살펴본다.

  • PDF

A method for analyzing the buckling strength of truss structures

  • Pan, Yi;Gu, Renqi;Zhang, Ming;Parke, Gerry;Behnejad, Alireza
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This paper develops a new method for estimating the elastic-plastic buckling strength of the truss structures under the static and seismic loads. Firstly, a new method for estimating the buckling strength of the truss structures was derived based on the buckling strength of the representative member considering the parameters, such as the structure configurations, boundary conditions, etc. Secondly, the new method was verified through the buckling strength estimation and the finite element method (FEM) analysis of the single member models, portal frame models and simple truss models. Finally, the method was applied to evaluate the buckling strength of a simple truss structure under seismic load, and the failure loads between the proposed method and the FEM were analyzed reasonably. The results show that the new method is feasible and reliable for structure engineers to estimate the buckling strengths of the truss structures under the static loads and seismic loads.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

Experimental Study on Structural Behavior of Tapered non-compact Frame with Snug-tightened Conditions (밀착조임 볼트체결에 따른 판폭두께비가 큰 변단면 프레임의 구조성능에 관한 실험적 연구)

  • Chung, Kyung-Soo;Jeon, Bae-Ho;Park, Man-Woo;Do, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.257-265
    • /
    • 2012
  • Current trends in steel construction include using tapered, non-compact sections to minimize the use of excess material as much as possible by choosing the cross-sections instead of the classical approach of using prismatic members. In addition, snug conditions, especially the end-plate type, have the advantage of incurring less construction costs and shorter assembly times as opposed to full pre-tensioned conditions. On the other hand, it is important to predict the collapse of the PEB system due to over-loading. Large-scale tests of tapered steel portal frames with non-compact sections were conducted. The primary test parameters included the bolt connection method and the loading condition (vertical and horizontal load). The test results on initial stiffness and load capacity were investigated. Furthermore, comparisons between the analytical and experimental data for load-displacement curves were initiated. In addition, we evaluated the applicability of a snug bolt for the PEB frame in the field.

Moment Resistance Performance of Each Joint for Post-Beam Frame Structure (기둥-보 뼈대구조를 위한 각부 접합부의 모멘트저항성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Japanese larch glulam was used as structural members to develop a modern engineered wood jointing system using traditional post and beam structure. For the connections comprised of traditional joining and drift-pins, structural members are processed at a pre-cut factory. As a basic study to examine and increase the whole shear performance of portal frame, pin withdrawal test and moment resistance tests were conducted on each connection. The post and beam members with specified connectors showed good bearing performance in the wood members' joining system, column-base and beam-end. Moment rigidity was a bit better in a joint with higher slenderness ratio of drift-pin, but moment resistance performances, yield moment and maximum moment, were excellent in smaller one.

A Study on the Stochastic Sensitivity Analysis in Dynamics of Shell Structure (쉘 구조물의 확률적 동적 민감도 해석에 관한 연구)

  • Bae, Dong-Myung;Lee, Chang-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.328-338
    • /
    • 1998
  • It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second oder perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method : the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, where as the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they codes whose element derivative matrices can be explicitly generated. The numerical results of two cases - 2-dimensional portal frame and 3/4-cylindrical shell structure - for the deterministic and stochastic sensitivity analysis illustrates in this paper.

  • PDF

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

The evaluation of usefulness of Electronic Portal Imaging Device(EPID) (Electronic Portal Imaging Device(EPID)의 유용성 평가)

  • Lee, Yang-Hoon;Kim, Bo-Kyoum;Jung, Chi-Hoon;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.19-31
    • /
    • 2005
  • Purpose : To supply the information of EPID system and to analyze the possibility of substitution EPID for film dosimetry. Materials & Methods : With amorphous silicon(aSi) type EPID and liquid filled lonization chamber(LC) type EPID, the reproducibility according to focus detector distance(FDD) change and gantry rotation was analyzed, and also the possible range of image acquisition was analyzed with Alderson Rando phantom. The resolution and the contrast of aSi type EPID image were analyzed through Las Vegas phantom and water phantom. DMLC image was analyzed with X-Omat V film and EPID to see wether it could be applied to the qualify assurance(QA) of IMRT. Results : The reproducibility of FDD position was within 1mm, but the reproducibility of gantry rotation was ${\pm}2,\;{\pm}3mm$ respectively. The resolution and the contrast of EPID image were affected by dose rate, image acquisition time, image acquisition method and frame number. According to the possible range of image acquisition of EPID, it is verified that the EPID is easier to use than film. There is no difference between X-Omat V film and EPID images for the QA of IMRT. Conclusion : Through various evaluation, we could obtain lots of useful information about the EPID. Because the EPID has digital data, also we found that the EPID is more useful than film dosimerty for the periodical Qualify Assurance of IMRT. Especially when it is difficult to do point dose measurement with diode or ionization chamber, the EPID could be very useful substitute. And we found that the diode and ionization chamber are difficult to evaluate the sliding window images of IMRT, but the EPID was more useful to do it.

  • PDF

A Research on the Classified Structural System in Long-Span Structures (대공간 구조형식 분류체계에 관한 연구)

  • Yang, Jae-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.81-92
    • /
    • 2002
  • The objective of this paper is to help to make decision of the appropriate structural types in long span structured building due to range of span. For the intention, based on 7 forces of structural element, it is analized the relationships among 6 configurations of structural element(d/1), 25 structural types, 4 materials, and span-length known with 186 sample from 1850 to 1996. 1) bending forces: $club(1/100{\sim}1/10),\;plate(1/100{\sim}1/10),\;rahmen(steel,\;10{\sim}24m)\;simple\;beam(PC,\;10{\sim}35m)$ 2) shearing forces: $shell(1/100{\sim}1/1000)\;hyperbolic\;paraboloids(RC,25{\sim}97m)$ 3) shearing+bending forces: plate, folded $plate(RC21{\sim}59m)$ 4) compression axial forces: club, $arch(RC,\;32{\sim}65m)$ 5) compression+tension forces: shell, braced dome $shell(RC,\;40{\sim}201m),\;vault\;shell(RC,\;16{\sim}103m)$ 6) compression+tension axial forces: $rod(1/1000{\sim}1/100)$, cable(below 1/1000)+rod, coble+rod+membrane(below 1/1000), planar $truss(steel,\;31{\sim}134m),\;arch\;truss(31{\sim}135m),\;horizontal\;spaceframe(29{\sim}10\;8m),\;portal\;frame(39{\sim}55m),\;domical\;space\;truss(44{\sim}222m),\;framed\;\;membrane(45{\sim}110m),\;hybrid\;\;membrane\;(42{\sim}256m)$ 7) tension forces: cable, membrane, $suspension(60{\sim}150m),\;cable\;\;beam(40{\sim}130m),\;tensile\;membrane(42{\sim}136m),\;cable\;-slayed(25{\sim}90m),\;suspension\;membrane(24{\sim}97m),\;single\;layer\;pneumatic\;structure(45{\sim}231m),\;double\;layer\;pneumatic\;structures(30{\sim}44m)$

  • PDF