• Title/Summary/Keyword: portal frame

Search Result 57, Processing Time 0.019 seconds

Evaluation of The Lateral Strength Performance of Rigid Wooden Portal Frame (강절형 목질 문형라멘프레임의 수평내력성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.535-543
    • /
    • 2017
  • For column-beam gussets of wooden structures, slit-processed members inserted with a steel plate are used in general. In this study, a rigid portal frame bonded with a joint was fabricated and a semi-rigid portal frame was fabricated by making a wooden gusset, a replacement for steel plate, of which a half was integrated into the column member and the other half was joined with the beam member by drift-pins. The lateral strength performance of the wooden portal frame was compared with that of the steel plate-inserted joint portal frame. The lateral strength performance was evaluated through a perfect elasto-plasticity model analysis, sectional stiffness change rate, and short-term permissible shear strength. As a result of the experiment, the maximum strength of the rigid portal frame was lower than that of the steel plate-inserted joint portal frame. The yield strength and ultimate strength were calculated as 0.58 and 0.48, respectively, but the measurements of initial stiffness and cumulative ductility improved by 1.35 and 1.1, respectively. As a result of the perfect elasto-plasticity model analysis of the semi-rigid portal frame, the maximum strength was lower than that of the rigid portal frame, but the toughness after failure was excellent. Thus, the ultimate strength was higher by 1.05~1.07. The steel plate-inserted portal frame showed rapid decrease in stiffness with the progress of repeated tests, but the stiffness of the portal frames with a wooden joint decreased slowly.

Design of lightweight mansard portal frames

  • Morales-Rodriguez, P.A.;Lopez-Perales, J.A.;Moreno, M.C. Serna
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 2017
  • Single-storey industrial buildings are one of the most often type of structures built among various skeletal framed steel constructions. These metallic buildings offer an exceptional opportunity to minimise the material employed, contributing to a more sustainable construction. In particular, the mansard portal frame is a typology made up of broken beams that involves different lengths and discontinuous slopes. This study aims the weight reduction of the standard mansard portal frame with design purposes by means of varying four parameters: the kink position, the eaves-apex slope, the span and the columns height. In this work, we suggest some guidelines that can improve the economical competitive capabilities of their structural design. In all the cases analysed, the joints of the portal frame are placed over the theoretical non-funicular shape to uniform loads. This allows reducing the bending moment and the shear force, but increasing the axial force. In addition, the performance of mansard and typical pitched portal frames submitted to the same boundary conditions is compared in terms of efficiency in the use of steel. In the large majority of the cases, mansard typologies are lighter than the common pitched frames and, hence, more economical.

Simple nonlinear static analysis of steel portal frame with pitched roof exposed to fire

  • Papadopoulos, Panagis G.;Papadopoulou, Anastassia K.;Papaioannou, Kyriakos K.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.37-53
    • /
    • 2008
  • Plane steel portal frames, with pitched roof, exposed to fire, are examined. First, a determinate frame is analysed by hand. For flexible columns and shallow roof, snap-through occurs before plastic hinges mechanism is formed. An indeterminate frame with shorter columns and taller roof is also analysed by hand. Then, the same frame is simulated by a truss and a nonlinear static analysis is performed by use of a short computer program. The results of computer analysis by use of truss model are compared with those of analysis by hand and a satisfactory approximation between them is observed.

Serviceability design of a cold-formed steel portal frame having semi-rigid joints

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.451-474
    • /
    • 2003
  • Details are given of a cold-formed steel portal framing system that uses simple bolted moment-connections for both the eaves and apex joints. However, such joints function as semi-rigid and, as a result, the design of the proposed system will be dominated by serviceability requirements. While serviceability is a mandatory design requirement, actual deflection limits for portal frames are not prescribed in many of the national standards. In this paper, a review of the design constraints that have an effect on deflection limits is discussed, and rational values appropriate for use with cold-formed steel portal frames are recommended. Adopting these deflection limits, it is shown through a design example how a cold-formed steel portal frame having semi-rigid eaves and apex joints can be a feasible alternative to rigid-jointed frames in appropriate circumstances.

Investigation of rotational characteristics of column 'PINNED' bases of steel portal frames

  • Liu, Timothy Chi-Ho
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.187-200
    • /
    • 2001
  • Most of the portal frames are designed these days by the application of plastic analysis, with the normal assumption being made that the column bases are pinned. However, the couple produced by the compression action of the inner column flange and the tension in the holding down bolts will inevitably generate some moment resistance and rotational stiffness. Full-scale portal frame tests conducted during a previous research program had suggested that this moment can be as much as 20% of the moment of resistance of the column. The size of this moment of resistance is particularly important for the design of the tensile capacity of the holding down bolts and also the bearing resistance of the foundation. The present research program is aiming at defining this moment of resistance in simple design terms so that it could be included in the design of the frame. The investigation also included the study of the semi-rigid behaviour of the column base/foundation, which, to a certain extent, affects the overall loading capacity and stiffness of the portal frames. A series of column bases with various details were tested and were used to calibrate a finite element model which is able to simulate the action of the holding down bolts, the effect of the concrete foundation and the deformation of the base plate.

Effects of shear deformation on the effective length of tapered columns with I-section for steel portal frames

  • Li, Guo-Qiang;Li, Jin-Jun
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.479-489
    • /
    • 2000
  • Based on the stiffness equation of the tapered beam element involving the effects of axial force and shear deformation, numerical investigations are carried out on elastic instability for web-linearly tapered columns with I-section of steel portal frames. Effects of shear deformation on the effective length of the tapered columns with I-section are studied. An efficient approach for determining the effective length of the tapered portal frame columns considering effects of shear deformation is proposed.

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.411-428
    • /
    • 2002
  • Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: (1) buckling of the stiffened free-edge into one-half sine wave, (2) local plate buckling of the exposed triangular bracket area.The results of full-scale laboratory tests on selected geometries of eaves bracket demonstrate that the proposed design recommendations are conservative. The use of the finite element method in this way exploits modern computational techniques for an otherwise difficult structural design problem.

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

Development of Electronic Portal Imaging Device and Treatment Position Verification for Fractionated Stereotatic Radiotherapy

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Chilgoo Byun;Hong, Seung-Hong;Rhee, Soo-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.446-449
    • /
    • 2002
  • The video based electronic portal imaging device (EPID), which could display the portal image in near real time, was implemented to verify treatment position error in FSRT(Fractionated Stereotatic Radiation Therapy) instead of a portal film. Also, Developed FSRT system was composed of the stereotactic frame, frame mounting system and collimator cones. The verification of treatment position is very crucial in special therapies like FSRT. In general, the FSRT uses high dpse rate at small field size for treating small intracranial lesions. To evaluate quantitative positioning errors in FSRT, we used the first FSRT image as reference image and obtained the second FSRT image that was moved 2mm intentionally and detected intracranial contours after image processing. The generated 2mm error could be verified by overlapping only contours of two images. Through this study, the radiation treatment efficiency could be improved by performing precise radiation therapy with a developed video based EPID and FSRT.

  • PDF