• Title/Summary/Keyword: portable electric devices

Search Result 54, Processing Time 0.039 seconds

Analysis and Degradation of leakage Current in submicron Device (미세소자에서 누설전류의 분석과 열화)

  • 배지철;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.113-116
    • /
    • 1996
  • The drain current of the MOSFET in the off state(i.e., Id when Vgs=0V) is undesired but nevertheless important leakage current device parameter in many digital CMOS IC applications (including DRAMs, SRAMs, dynamic logic circuits, and portable systems). The standby power consumed by devices in the off state have added to the total power consumed by the IC, increasing heat dissipation problems in the chip. In this paper, hot-carrier-induced degra- dation and gate-induced-drain-leakage curr- ent under worse case in P-MOSFET\`s have been studied. First of all, the degradation of gate-induced- drain-leakage current due to electron/hole trapping and surface electric field in off state MOSFET\`s which has appeared as an additional constraint in scaling down p-MOSFET\`s. The GIDL current in p-MOSFET\`s was decreased by hot-electron stressing, because the trapped charge were decreased surface-electric-field. But the GIDL current in n-MOS77T\`s under worse case was increased.

  • PDF

Development of Application Technique for 3-1 Type Triple-morph Cantilever (3-1 타입 트리모프 캔틸레버의 마이크로발전 응용기술 개발)

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Jeon, So-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1303_1304
    • /
    • 2009
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31type triple-morph cantilever was resulted from the conditions of $100k{\Omega}$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of 6.57Vrms, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$. And than, the fabricated piezoelectric cantilever was packaged for application.

  • PDF

Micro-power Properties of 31Type Triple-morph Cantilever for Energy Harvesting Device (31 타입 트리모프 켄틸레버의 마이크로 발전 특성 연구)

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jung, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Jeon, So-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.220-221
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31 type triple-morph cantilever was resulted from the conditions of 100k$\Omega$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of $6.57V_{rms}$, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$.

  • PDF

Fabrication and Characterization of Triboelectric Energy Harvester

  • Sung, Tae-Hoon;Lee, Jun Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.631-631
    • /
    • 2013
  • Battery has major drawbacks including its size and life expectancy, and environmental problem. As an alternative, energy harvesting is emerging as a potential solution to replace battery along with more energy-efficient IT devices. The idea of harnessing energy from our living environment is sustainable, semi-permanent, and eco-friendly. Also, unlike battery, energy harvester does not require much space to store energy. Therefore, energy harvesting can provide a better source of power for small, portable, and wireless devices. Among various ways of harvesting energy from our surroundings, triboelectricity is chosen due to its potential to be miniaturized, and efficient. Triboelectric effect occurs as two different materials with different polarity of charge separation come into contact through friction, and then become separated so that electric potential difference is achieved. In this research, such characteristic of triboelectricity is used as a way to convert ambient mechanical energy into electric energy.Series of recent researches have shown promising results that the triboelectric energy harvester can be simple and cost effective. However, sufficient electricity level required to operate mobile devices has not yet been achieved.In this research, our group focuses on the design and optimization of triboelectric energy harvesting device to enhance its output. By using maskless lithography to pattern Kapton film and silicon substrate, which is used as a mold for PDMS thin layer, and sputtering metal electrodes on each side, we fabricate and demonstrate different designs of triboelectric energy harvester that utilizes the contact electrification between a polymer thin film and a metal thin foil. In order to achieve optimized result, the output voltage and current are measured under diverse conditions, which include different surface structure and pattern, material, and the gap between layers.

  • PDF

Convenient and Economic Mechatronics Education Using Small Portable Electronic Devices (휴대용 소형 전자장비를 이용한 편리하고 경제적인 메카트로닉스 교육)

  • Kang, Chul-Goo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Although mechatronics education in a mechanical engineering curriculum is recently recognized as important, its experimental education has been done generally in the laboratory equipped with all the apparatus and could not be done at home by students. This paper introduces experimental educations on mechatronics, e.g., digital logic circuits, 7-segment LED drive, square wave generation, microcontroller programming using assembly and C languages, timer interrupt, and step motor drive using a small 5 V power supply, a breadboard, various electronic and electric components, a microcontroller and its programmer, a step motor, and a student's PC. In the developed mechatronics course, experimental educations are scheduled in parallel with content's lectures together, and cheap and economic experimental environment is prepared for students in which students can easily practice experimental works in advance or later at home by themselves.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

  • Chung, Y.D.;Lee, C.Y.;Lee, S.Y.;Lee, T.W.;Kim, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu;Xin, Yuelong;Cheng, Fuquan;Lai, Man On;Zhou, Henghui;Lu, Li
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.72-82
    • /
    • 2014
  • Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

Advances in Li-ion Batteries

  • Lee, Se-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • Efficient and durable electrical energy storage is one of the major factors limiting the wide-spread adoption of renewable energy. Since lithium-ion batteries (LIBs) were first commercialized in the early 1990s, LIBs have emerged as an important energy storage device for portable electronics. LIBs are very desirable because of their high energy storage per volume and per mass. However, LIBs with high energy and power as well as higher stability are needed for their use in a variety of energy storage applications such as MEMS devices, PDA, plug-in hybrids, all-electric vehicles and large scale utility systems. In this talk, I will discuss present energy perspective, especially energy storage and its role in renewable energy. After that I will discuss the recent advances in nanostructured materials and interface engineering that have led to the achievement of improved Li-ion batteries. Finally I will talk aboutcritical issues that need to be addressed to obtain further improvements in Li-ion batteries.

  • PDF

A Study on Thermoelectric Converter Using DMFC (Direct Methanol Fuel Cell) System (DMFC 시스템에 사용한 열전 변환기에 관한 연구)

  • Zhang, Jing-Liang;Moon, Chae-Joo;Chang, Young-Hak;Cheang, Eui-Heang;Kim, Tae-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.92-94
    • /
    • 2007
  • This article describes a thermoelectric converter, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to power a converter using direct methanol fuel ceil (DMFC) system. The characteristics of the TE module were tested at different temperatures. A boost BC-DC converter was designed and controlled by a power-supply controller chip. Efficiency of about 80% can be achieved and because the thermoelectric converter system has not moving parts and has a small volume, the system can be carried about easily and conveniently to supply portable electric equipment and this is very important for some mobile equipment.

  • PDF