• 제목/요약/키워드: portable blood gas analysis system

검색결과 4건 처리시간 0.023초

휴대형 혈액가스분석 시스템의 구현 및 성능평가 (Implementation on the Portable Blood Gas Analyzer and Performance Estimation)

  • 정도운;전계록;배진우;김길중;심윤보
    • 센서학회지
    • /
    • 제12권1호
    • /
    • pp.34-43
    • /
    • 2003
  • 본 연구에서는 동맥혈액 내의 혈액가스(pH, $pCO_2$, $pO_2$)를 측정할 수 있는 휴대용 혈액가스 분석 시스템을 구현하였다. 구현된 시스템은 크게 하드웨어부와 소프트웨어부로 구분하였으며, 하드웨어부는 메커니즘과 전자회로부로 구분하여 설계하였다. 소프트웨어부는 각 모듈별로 작성하였으며, 운용프로그램, 세척프로그램, 교정프로그램, 측정프로그램 등으로 구성하였다. 그리고 시스템의 정확한 교정을 위하여 2점 교정방식을 사용하였고, 1점 보정방식을 추가 적용하여 측정의 정확성을 높이고자 하였다. 시스템의 평가를 위하여 각 전극의 감응특성을 조사하였다. 그리고 정확도 평가를 위하여 표준용액을 이용하여 측정실험을 하고 통계적인 분석을 하였다. 그 결과 계수변화율이 1.12이내이었고, 최대오차가 1.298%이내인 정확도를 나타내었으며, 휴대형 ABGA의 개발 가능성을 확인하였다.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

휴대형 혈액가스 분석시스템의 구현 (Implementation on the Portable Blood Gas Analyzer)

  • 강성철;정도운;배진우;손정만;심윤보;전계록
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.1032-1036
    • /
    • 2006
  • In this study, we implement the potable blood gas analyzer measuring pH, $pCO_2\;and\;pO_2$ of the arterial blood. The implemented system by this study is divided into hardware and software part and also the hardware portion is parted by mechanism and electronic circuit mit. The system program is composed of operating, washing, correcting and measuring program. And to correct the system, two-point calibration method is used, one-point calibration method is also added for more accuracy, and system program is coded. For verifying the implemented system, We examine to response property of each electrode. And evaluate accuracy of the system using standard reagent and was construed as statistical.

  • PDF

모듈형 환자감시기와 중앙 환자감시기로 구성되는 환자감시시스템 시제품의 개발: 전체구조 및 사양 (Development of a Prototype Patient Monitoring System with Module-Based Bedside Units and Central Stations: Overall Architecture and Specifications)

  • 우응제;박승훈;전병문;문창욱;이희철;김승태;김형진;서재준;채경명;박종찬;최근호;이왕진;김경수
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.315-319
    • /
    • 1996
  • We have developed a prototype patient monitoring system including module-based bedside units, interbed network, and central stations. A bedside unit consists of a color monitor and a main CPU unit with peripherals including a module controller. It can also include up to 3 module cases and 21 different modules. In addition to the 3-channel recorder module, six different physiological parameters of ECG, respiration, invasive blood pressure, noninvasive blood pressure, body temperature, and arterial pulse oximetry with plethysmogaph are provided as parameter modules. Modules and a module controller communicate with up to 1Mbps data rate through an intrabed network based on RS-485 and HDLC protocol. Bedside units can display up to 12 channels of waveforms with any related numeric informations simultaneously. At the same time, it communicates with other bedside units and central stations through interbed network based on 10Mbps Ethernet and TCP/IP protocol. Software far bedside units and central stations fully utilizes gaphical user interface techniques and all functions are controlled by a rotate/push button on bedside unit and a mouse on central station. The entire system satisfies the requirements of AAMI and ANSI standards in terms of electrical safety and performances. In order to accommodate more advanced data management capabilities such as 24-hour full disclosure, we are developing a relational database server dedicated to the patient monitoring system. We are also developing a clinical workstation with which physicians can review and examine the data from patients through various kinds of computer networks far diagnosis and report generation. Portable bedside units with LCD display and wired or wireless data communication capability will be developed in the near future. New parameter modules including cardiac output, capnograph, and other gas analysis functions will be added.

  • PDF