• 제목/요약/키워드: porous nanocomposite

검색결과 60건 처리시간 0.028초

금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구 (The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite)

  • 백영민;이상관;엄문광;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • 한국포장학회지
    • /
    • 제27권2호
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권4호
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서 (3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites)

  • 김정현;김현승;정창규;이한얼
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

녹색 촉매반응을 위한 코발트 옥사이드/그래핀의 계층적 다공성 3D 젤 (Hierarchical Porous 3D gel of the Co3O4/graphene with Enhanced Catalytic Performance for Green Catalysis)

  • 정재민;장석현;김윤수;김현빈;김도현
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.404-409
    • /
    • 2018
  • 나노사이즈의 유기물과 무기물을 조합하여 계층적인 크기의 기공을 가지는 촉매의 개발은 서로 다른 특징을 갖는 물질의 구조제어를 통한 반응물의 이동 통로를 만들어 주어 다양한 촉매에 적용 될 수 있다. 본 연구에서는 계층적 크기의 기공을 가지기 때문에 PET 글리콜리시스에서 우수한 촉매 활성을 보일 수 있는 코발트 옥사이드/그래핀 3D 젤을 수열합성법에 의하여 제조하였다. 코발트 옥사이드와 그래핀 시트의 상호작용에 의하여 3D 젤을 얻었고, 다양한 크기의 기공 구조는 넓은 활성 면적을 주어 코발트 옥사이드의 효과적인 촉매반응을 가능하게 하였다. 촉매로 사용하였을 때 코발트와 그래핀의 시너지 효과는 제조한 물질의 구조적 장점을 가지도록 하였고, 제조한 물질을 PET 분해반응의 BHET의 높은 전환률(97.5%), 빠른 PET 분해속도(94.5%, 60 min), 반응 안정성(93.1%, 18회 재사용) 등 우수한 촉매 활성능을 보였다.

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution

  • Kim, Dongyoung;Park, Soo-Jin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, we present a more electrochemically enhanced electrode using activated carbon (AC)-sulfur (S) composite materials, which have high current density. The morphological and micro-structure properties were investigated by transmission electron microscopy. Quantity of sulfur was measured by thermogravimetric analysis analysis. The electrochemical behaviors were investigated by cyclic voltammetry. As a trapping carbon structure, AC could provide a porous structure for containing sulfur. We were able to confirm that the AC-S composite electrode had superior electrochemical activity.

Effect of nano-composite materials on repair of ligament injury in sports detoxification

  • Lu, Chunxia;Lu, Gang;Dong, Weixin;Liu, Xia
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.247-257
    • /
    • 2022
  • Extraordinary properties of nanocomposites make them a primary replacement for many conventional materials. Anterior cruciate ligament (ACL) reconstruction, which is a frequent surgery in sport activities, is one of the fields in which nanocomposites could be utilized. In the present study, the mechanical properties of different porous scaffolds made from graphene nano-composites are presented ad load bearing capacity of these materials is calculated using finite element method. The numerical results are further compared with experimental published data. In addition, several geometrical and material parameters are analyzed to find the best configuration of nanocomposite scaffolds in reconstruction of ACL. Moreover, coating of detoxification chemicals are extremely easier on the nano-structured materials than conventional one. Detoxification potential of nano-composites in the injured body are also discussed in detail. The results indicated that nano-composite could be successfully used in place of auto- and allografts and also instead of conventional metallic screws in reconstruction of ACL.

비납계 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 압전 나노소재를 이용한 복합체 필름 기반의 플렉서블 에너지 하베스터 개발 (Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials)

  • 김광현;박현준;배빛나;장학수;김철민;이동훈;박귀일
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.16-22
    • /
    • 2024
  • Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and self-powered devices owing to their excellent mechanical durability and output performance. In this study, we design a lead-free piezoelectric nanocomposite utilizing (Ba0.85 Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solid-state reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 ㎂, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.