• Title/Summary/Keyword: porous metal

Search Result 471, Processing Time 0.025 seconds

Adsorption Characteristic of Ammonia by the Cation-Exchange Membrane (양이온 교환막에 의한 암모니아 흡착 특성)

  • Kim, Min;Choi, Hyuk-Jun;Yang, Kab-Suk;Heo, Kwang-Beom;Kim, Byoung-Sik
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2007
  • In this research, the cation-exchange membrane (SS membrane) containing sulfonic acid group was prepared by radiation induced grafted polymerization onto a porous hollow fiber membrane to effectively remove ammonia which was produced by urea decomposition for peritoneum dialysis system. And the metal ionic cross-linking cation-exchange membrane (SS-M membrane) was prepared by the adsorption of metallic ions (Cu, Ni, Zn) to the SS membranes. The pure water flux and adsorption capacities of ammonia to SS and SS-M membranes were examined. The pure water flux of SS membrane decreased rapidly with the density of $SO_3H$ group increasing. As the metallic ions were adsorbed to the SS membrane, the pure water flux was increased. The adsorption capacities of ammonia at the SS membrane increased with increasing of density of $SO_3H$ group. The ion-exchange capacity of ammonia of the SS membrane was approximately proportional 1 : 1 to the density of $SO_3H$ group. The SS membrane had higher adsorption capacities than the SS-M membrane. The highest adsorption capacities of SS and SS-M membrane appeared the highest pH 9.

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • Park Sung-Bin;Seo Chung-seok;Kang Dae-Seung;Kwon Seon-Gil;Park Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The electrolytic reduction of uranium oxide in a LiCl-Li$_{2}$O molten salt system has been studied in a 10 g U$_{3}$O$_{8}$ /batch-scale experimental apparatus with an integrated cathode assembly at 650$^{\circ}C$. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt$\%$ Li$_{2}$O system and the U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  • PDF

Control of YAG($Y_{3}Al_{5]O_{12}$) Particle Shape prepared by Sol-Gel Process (솔-젤 공정(工程)을 이용(利用)하여 제조(製造)된 YAG($Y_{3}Al_{5}O_{12}$) 분말 입형제어)

  • Park, Jin-Tae;Kim, Chul-Joo;Yoon, Ho-Sung;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.52-59
    • /
    • 2008
  • Sol-gel process applied in this study was carried out by chelation of metal ions and citric acid. From the results of thermal gravimetric analysis and XRD analysis of gel powder obtained through sol-gel and heat treatment, gel powders are mostly amorphous, and crystallize completely at $900^{\circ}C$, and the crystalline structure of YAG increases with increasing calcinations temperature. Since YAG prepared by sol-gel & calcinations process was porous, and the sape and size was irregular and nonuniform, the shape and size of YAG powder had to be controlled. Therefore the effects of organic materials such as ethylene glycol and surfactant on the crystalline structure of YAG powder were investigated. Polyesterification of ethylene glycol and citric acid separated reaction area of metal ions in the solution and decreased the size of YAG primary particles. The addition of Igepal 630 as surfactant formed the droplet in the solution, and increased the size of primary particles which forms the aggregate of YAG In order to obtain monodispersed YAG particles of uniform size, gel powder prepared with organic materials had to be milled before calcination. And milling process was very important for obtaining YAG of uniform size.

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.

Synthesis of Fe-doped β-Ni(OH)2 microcrystals and their oxygen evolution reactions (Fe 도핑된 β-Ni(OH)2 마이크로결정 합성과 산소발생반응 특성)

  • Je Hong Park;Si Beom Yu;Seungwon Jeong;Byeong Jun Kim;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.196-201
    • /
    • 2023
  • In order to improve the efficiency of the water splitting system for hydrogen energy production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds (hydroxide, sulfide, etc.) are attracting attention as catalyst materials to replace currently used precious metals such as platinum. In this study, Ni foam, an inexpensive metal porous material, was used as a support and β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the crystal morphology, crystal structure, and water splitting characteristics of β-Ni(OH)2 microcrystals synthesized by doping Fe to improve electrochemical properties were observed, and applicability as a catalyst in a commercial water electrolysis system was examined.

Effects of Mo co-doping into Fe doped β-Ni(OH)2 microcrystals for oxygen evolution reactions (Fe-doped β-Ni(OH)2의 산소발생반응 증가를 위한 Mo의 동시도핑효과)

  • Je Hong Park;Si Beom Yu;Tae Kwang An;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • In order to improve the efficiency of the water splitting system for hydrogen production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metal porous material, was used as a support, and Fe-doped β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, in order to improve OER properties, changes in the shape, crystal structure, and water splitting characteristics of Fe-Mo co-doped β-Ni(OH)2 microcrystals synthesized by co-doping with Mo were observed. The changes in the shape, crystal structure, and applicability as a catalyst for water splitting were examined.

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Predicting Migration of a Heavy Metal in a Sandy Soil Using Time Domain Reflectometry (TDR을 이용한 사질토양에서의 중금속 이동 추정)

  • Dong-Ju Kim;Doo-Sung Baek;Min-Soo Park
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Recently, transport parameters of conservative solutes such as KCl in a porous medium have been successfully determined using time domain reflectometry (TDR) . This study was initiated to Investigate the applicability of TDR technique to monitoring the fate of a heavy metal ion in a sandy soil and the distribution of its concentration along travel distance with time. A column test was conducted in a laboratory that consists of monitoring both resident and flux concentrations of $ZnCl_2$in a sandy soil under a breakthrough condition. A tracer of $ZnCl_2$(10 g/L) was injected onto the top surface of the sample as pulse type as soon as a steady-state condition was achieved. Time-series measurements of resistance and electrical conductivity were performed at 10 cm and 20 cm of distances from the inlet boundary by horizontal-positioning of parallel TDR metallic rods and using an EC-meter for the effluent exiting the bottom boundary respectively. In addition. Zn ions of the effluent were analyzed by ICP-AES. Since the mode and position of concentration detected by TDR and effluent were different, comparison between ICP analysis and TDR-detected concentration was made by predicting flux concentration using CDE model accommodating a decay constant with the transport parameters obtained from the resident concentrations. The experimental results showed that the resident concentration resulted in earlier and higher peak than the flux concentration obtained by EC-meter, implying the homogeneity of the packed sandy soil. A close agreement was found between the predicted from the transport parameters obtained by TDR and the measured $ZnCl_2$concentration. This indicates that TDR technique can also be applied to monitoring heavy metal concentrations in the soil once that a decay constant is obtained for a given soil.

  • PDF

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.