• 제목/요약/키워드: porous ceramics

검색결과 268건 처리시간 0.021초

Porous bioactive glass ceramics for bone-tissue regeneration

  • 윤희숙;김승언
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Nanoporous bioactive glass(NBG) ceramic with well interconnected pore structures were fabricated bytriblock copolymer templating and sol-gel techniques. Hierarchically porous BGbeads were also successfully synthesized by controlling the condition of solvent.The beads have hierarchically nano- and macro-pore structure with a sizesbetween several tens nanometers and several hundred micrometers. Both NBG andBG beads show superior bone-forming bioactivity and good in vitrobiodegradability. Biocompatibility both in vitro and in vivo were examed andwas revealed that it largely relies on the pore morphology as well ascomposition. Our synthetic process can be adapted for the purpose of preparingvarious bioceramics, which have excellent potential applications in the fieldof biomaterials such as tissue engineering and drug storage.

  • PDF

다공성 실리콘의 발광에 관한 연구 (A Study on the Photoluminescence of Porous Si)

  • 김석;최두진;윤영수;양두영;김우식
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.608-616
    • /
    • 1995
  • Porous silicon (PS) was prepared under different anodization conditions and the photoluminescence (PL) was measrued. In addition PL of the naturally and thermally oxidized PS was measured. It was found that the PL peak was shifted to shorter wavelength as the anodization current density and the extent of the oxidation increased. The absence of correlation between the PL behavior and the surface hydrogen species (Si-H2, Si-H) implies that the mechanism of PL of PS is not likely related to the surface hydrogen species effect but to the quantum confinement effect.

  • PDF

Fabrication of Hydroxyapatite Ceramics to Mimic the Natural Bone Structure

  • Moon, Dae-Hee;Ryu, Su-Chak
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.390-395
    • /
    • 2011
  • The objective of our study was to produce an imitation bone material consisting of hydroxyapatite with a compact and spongy structure. This study shows the ideal content of $SiO_2$ and the sintering temperature to produce imitation bone that has the mechanical properties of natural bone. On the basis of our determination of the ideal conditions, a compact part was produced and its mechanical properties were tested. A compact part made of 0.5 wt% $SiO_2$ and sintered at $1350^{\circ}C$ showed excellent mechanical properties. The bioactivity of the compact part under this condition was tested, and it was found to be bioactive. The porous part was produced by controlling the powder size, and the dual structure was manufactured by combining the compact and porous parts. A water permeability test confirmed that the dual structure had an interconnected pore structure. Therefore, this dual-body structure is feasible for use in the creation of implants.

Stabilization of Wet Foams for Porous Ceramics Using Amphiphilic Particles

  • Pokhrel, Ashish;Park, Jung-Gyu;Nam, Jeong-Sic;Cheong, Deock-Soo;Kim, Ik-Jin
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.463-466
    • /
    • 2011
  • Wet foams formed through direct foaming were stabilized using various concentrations of amiphiphilic particles that could control pore size and porosity. These porous materials showed moderate strength upon compression with high porosity. Bubble size and wet foam stability were tailored by amphiphile concentration, particle concentration, contact angle, and pH of the suspension to obtain crack-free porous solid after sintering. Closed and open pores were obtained with sizes of 30~300 ${\mu}m$ and porosities of over 80%.

ZrO2-C계 침지노즐 제조시 상대습도에 따른 바인더용 페놀수지의 영향 (Effect of Phenolic Resin According to Relative Humidity on Submerged Entry Nozzle with ZrO2-C System in Fabrication Process)

  • 윤상현;김장훈;김주영;이희수;구영석
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.293-297
    • /
    • 2011
  • The thermodynamic behavior of phenolic resin was investigated to verify the relation between the properties of porous ceramics with $ZrO_2$-C system for submerged entry nozzle and the characteristics of phenolic resin with various relative humidity. The green and the sintered density were decreased between 25% and 50% relative humidity, whereas they were gradually enhanced above 50% relative humidity. The highest value of apparent porosity was 20.1% and the minimum compressive strength was 69MPa in the specimen using the powder exposed to 50% relative humidity. As a result of thermal analysis for phenolic resin, the shift of endothermic peak to low temperature and the reduction of exothermic peak were observed, and the peaks corresponded to melting and curing of phenolic resin, respectively. The melting and the curing of phenolic resin generate the change of green density, and it can affect the properties of submerged entry nozzle.

석탄재를 이용한 뮬라이트 휘스커 고다공성 세라믹 제작 (Fabrication of High Porous Ceramic with Mullite Whisker from Fly Ash)

  • 신철;황광택;김응수;한규성;최정훈;김진호
    • 한국재료학회지
    • /
    • 제32권5호
    • /
    • pp.258-263
    • /
    • 2022
  • Porous ceramics have the advantages of low density, low thermal conductivity, and excellent mechanical properties. Among porous ceramic manufacturing methods, the replica template method allows the easy manufacturing of porous filters with the highest porosity and pores of the desired size, but it also has the disadvantage that the resulting filters have low mechanical strength. To overcome this shortcoming, mullite (3Al2O3·2SiO2) whiskers, which have excellent thermal stability and high mechanical strength, were introduced in porous ceramic structure. The mullite whiskers were synthesized using a composition of Al2O3, flyash and MoO3. The morphologies and crystal structures of the mullite whiskers with MoO3 contents were investigated in detail. When the porous ceramic with mullite whiskers was fabricated using 20 wt% MoO3 catalyst the most uniform microstructure was obtained, and the mullite whiskers showed the highest aspect ratio of 47.03. The porosity and compressive strength of the fabricated porous ceramic were 82.12 % and 0.83 MPa, respectively.

CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(IV) : 12 Ce-TZP 세라믹스에 미치는 MgO 첨가 영향 (A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals (Ce-TZP) (IV) ; Effect of MgO Addition on 12 Ce-TZP Ceramics)

  • 김문일;박정현;강대석;이현권;문성환
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.233-243
    • /
    • 1990
  • For theinvestigation of MgO addition effect on 12Ce-TZP ceramics, MgO-CeO2-ZrO2 ceramics was fabricated using commercial powders under sintering condition of 130$0^{\circ}C$-1$600^{\circ}C$ for 2hr. Fully tetragonal phase could be obtained by proper heat treatment and MgO addition amount. Minor cubic phase was appeared in relatively high MgO content composition at each sintering temperature. As alloying amount of MgO increased, tetragonal stability increased and grain size decreased. Grain size dependence on MgO content was verified by SEM observation of fractured surface. Surface bloating was observed from the 2 m/o to 6m/o in the temperature range of 150$0^{\circ}C$ to 1$600^{\circ}C$. In spite of very porous microstructure owing to surface bloating, 100% TZP could be maintained in 2.0m/o MgO composition by heat treatment of 150$0^{\circ}C$. This result indicated that MgO was more powerful stabilizer than CeO2. Mechanical proprties of MgO-CeO2-ZrO2 ceramics were consistent with the stability observation of tetragonal phase very well.

  • PDF

포스테라이트계 유전체의 마이크로파 유전특성 (Microwave dielectric properties of Forsterite based Ceramics)

  • 김동영;이홍열;전동석;이상석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.279-282
    • /
    • 2003
  • For the millimeter-wave dielectrics, Forsterite-based ceramics were produced. Pure forsterite ceramics($Mg_2SiO_4$) shows porous micro-structure and very low Q*f values, which is not suitable for the dielectrics for the millimeter-wave band. Several sintering aids including $Al_2O_3$, $Li_2CO_3$, $Li_2SiO_4$, were added to the forsterite ceramics in order to produce dense low-loss dielectrics. Among these additives, $Li_2CO_3$ is the most effective sintering aids. Several sub-components including NiO, ZnO, $SnO_2$, $TiO_2$, were added to enhance the microwave dielectric properties. $TiO_2$ is the most effective additive to enhance the dielectric properties at microwave bands. The simultaneous addition of $TiO_2$ and $Li_2CO_3$ increases Q*f value over 170,000, which can be used as dielectrics in millimeter-wave bands.

  • PDF

Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화 (Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method)

  • 조훈성;양중식
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

Variation of Oxygen Nonstoichiometry of Porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$ SOFC-Cathode under Polarization

  • Mizusaki, Junichiro;Harita, Hideki;Mori, Naoya;Dokiya, Masayuki;Tagawa, Hiroaki
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.177-182
    • /
    • 2000
  • At the porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$(LCM)/YSZ electrodes of solid oxide fuel cells (SOFC), the electrochemical redox reaction of oxygen proceeds via the triple boundary (TPB) of gas/LCM/YSZ. The surface diffusion of adsorbed oxygen on LCM has been proposed as the rate determining process, assuming the gradient of oxygen chemical potential from the outer surface of porous layer to TPB. Along with the formation of this gradient, oxygen nonstoichiometry in the bulk of LCM may varies. In this paper, an electrochemical technique was described precisely to determine the variation of oxygen content in LCM of porous LCM/YSZ under polarization. It was shown that the oxygen potential in LCM layer under large cathodic polarization is much lower than that in the gas phase, being determined from the electrode potential and Nernst equation.

  • PDF