• Title/Summary/Keyword: porous catalyst

Search Result 186, Processing Time 0.036 seconds

Performance Evaluation of a Micro Thruster Utilizing Hydrogen Peroxide Decomposition (과산화수소 분해반응을 이용한 초소형 추력기 성능평가)

  • Lee, Jeong-Sub;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.102-105
    • /
    • 2007
  • The performance evaluation of the micro thruster utilizing hydrogen peroxide decomposition is described. The catalyst bed was made of porous ceramic material($Isolite^{(R)}$) with large surface to mass ratio. 14%wt platinum was loaded on the catalyst support as a catalyst. Hydrogen peroxide with 85% concentration was used as a monopropellant. The length of the catalyst bed and the feed pressure of the hydrogen peroxide were taken as the parameters for the experiment. All experiments were carried out under cold start condition for 30 seconds. The $c^*$ efficiency was evaluated for each test case using measured pressure data. For the catalyst support length of 30 mm and feed pressure at 5.51 bar, satisfactory $c^*$ efficiency beyond 95% was observed.

  • PDF

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

Dehydrogenation of methylcyclohexane over porous metals (다공성 금속 촉매를 이용한 메틸사이클로헥산의 탈수소 반응)

  • Kim, Jong-Pal
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.2
    • /
    • pp.152-158
    • /
    • 2004
  • Hydrogen has been considered as an important and essential future energy source. But the storage of the hydrogen is a difficult problem and many studies were focused on this matter. However, the MTH-system (methylcyclohexane, toluene, hydrogen) was proposed for storage of hydrogen by Taube et al. and that is the reaction of hydrogen with toluene to give methylcyclohexane. One toluene molecule can store six hydrogen atoms to form methylcyclohexane. In this form the hydrogen can be easily stored in liquid organic hydrides and transported at ambient pressure in tanks. Hence, this study is focused on the catalytic dehydrogenation of methylcyclohexane. Since supported platinum and nickel were employed as catalysts in literature, in this study, porous Pt and Ni were prepared and tested for the dehydrogenation reaction. When the porous Pt catalyst was applied to the dehydrogenation it showed higher activity in the reaction and higher selectivity to toluene. Specially at higher pressure, it showed almost 100 % conversion and 100 % selectivity and hence porous platinum could be considered as best for the given reaction.

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography (적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

New Technology with Porous Materials: Progress in the Development of the Diesel Vehicle Business

  • Ohno, Kazushige
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.497-506
    • /
    • 2008
  • The long time of twenty years has passed since Diesel Particulate Filter (DPF) was proposed before the practical use. The main factors that DPF has been put to practical use in this time, are the same time proposal of the evaluation method of SiC porous materials linked to he performance on the vehicle, and that the nature of thermal shock required for the soot regeneration (combustion of soot) in the DPF is different from the conventional requirement for the rather rapid thermal shock. For the requirements, these includ demonstrating utmost the characteristic of SiC's high thermal conductivity, and overcoming the difficulty of thermal expansion of SiC-DPF by dividing the filter into segments binding with the cement of lower Young's modulus, and the innovation of technology around the diesel exhaust system such as Common-Rail system. As the results of these, the cumulative shipments of SiC-DPF have reached about 5 million, and it goes at no claim in the market.

Fabrication of Hollow Metal Microcapsules with Mesoporous Shell Structure: Application as Efficient Catalysts Recyclable by Simple Magnetic Separation

  • Jang, Da-Young;Jang, Hyung-Gyu;Kim, Gye-Ryung;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3274-3280
    • /
    • 2011
  • Monodispersed porous NiO and $Co_3O_4$ microcapsules with a hollow core were synthesized using SBA-16 silica sol and PS as a hard template. The porous hollow microcapsules were characterized by XRD, TEM and $N_2$ adsorption/desorption analysis. After $H_2$ reduction of metal oxide microspheres, they were conducted as an active catalyst in the reduction of chiral butylronitrile and cyanobenzene. The mesoporous metals having a hollow structure showed a higher activity than a nonporous metal powder and an impregnated metal on the carbon support.