• 제목/요약/키워드: porous casting mold

검색결과 8건 처리시간 0.025초

슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작 (Rapid Tooling of Porous Ceramic Mold Using Slip Casting)

  • 정성일;정두수;임용관;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

신발 금형의 쾌속제작기술 개발 및 그 적용에 관한 연구 (Development of Rapid Tooling Technology for Shoe Mold and Its Applications)

  • 정성일;임용관;정해도;정두수;배태용;이석우;최헌종
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1371-1379
    • /
    • 2003
  • RP&M (Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, because the production cycle is getting shorter owing to various needs of the consumer. In this paper, rapid tooling technology is applied to the casting process. The casting process has the ability to reflect complicated shapes in one process. But it has not been widely used to make a die and mold because of the poor surface quality caused by air bubbles on the surface of the casting product. In this study, the porous casting mold is fabricated from a mixture of plaster and water-soluble binder. The porous casting mold can improve the characteristics of casting products with the help of the vacuum sealed casting process. The vacuum sealed casting process is an advanced technology that removes the air bubbles between the porous casting mould and the liquid metal, thus making the surface of the casting product finer. The purpose of this paper is to develop a high quality shoe mold using porous casting mold and to apply the RP&M technology to the shoe industry.

통기성 세라믹형을 이용한 알루미늄 신발금형의 쾌속제작 (Rapid Tooling of Aluminum Shoes Mold Using Porous Mold)

  • 정성일;정두수;김도경;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.62-67
    • /
    • 1999
  • The RP&M(Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. Recently RP products which are made of plastics, wax, and paper are used to verify the design of samples. But these products cannot be applied to the real mold because the strength enough to be a mold cannot be given by soft materials such as plastics. So RP products are copied to AFR(Al powder Filled Resin) molds or metal molds, which is called the RP&M. In this paper, RP&M is applied to a casting process. A porous casting mold, which is made from ceramic powder and binder, is used for rapid tooling of aluminum shoes molds.

  • PDF

순수 티타늄 주조체의 주형온도에 따른 용탕반응성 및 표면거칠기 (Metal-Mold Reaction and Surface Roughness Measurement of Pure Titanium Casting Specimens with Mold Temperatures)

  • 차성수;송영주;박수철
    • 대한치과기공학회지
    • /
    • 제32권4호
    • /
    • pp.297-305
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the change of metal-mold reaction and surface roughness in titanium casting specimens for phosphate-silica alumina bonded investment with mold temperatures. Methods: The metal-phosphate silica alumina bonded mold interface reaction and surface roughness of titanium casting specimens according to mold temperatures were investigated. The Specimens were analysed by scanning electron microscopy and surface roughness tester. Results: The oxidation behavior indicated by the growth of oxide thickness. The titanium-oxide layer were consisted two layer of a porous external and a dense internal one. The reaction layer and surface roughness increased with increasing investment material temperature. Conclusion: In this work, The most suitable mold temperature in casting of pure titanium was $200^{\circ}C$.

Fine Ceramics의 Casting공정을 위한 다공질 알루미나 몰드의 제조 (Fabrication of Porous Alumina Mold for the Casting Process of Fine Ceramics)

  • 박한수
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.89-96
    • /
    • 1999
  • 석고몰드의 단점을 극복할 수 있는 다공질 알루미나 몰드의 제조저건을 확립하였다. 다공질 알루미나 몰드의 제조를 위해 활성탄의 질량비에 따라 조성비를 달리하여 첨가한 후, ESA와 유동특성 등을 조하삼으로써 안정된 이상 슬러리를 제조하였으며, 이를 석고몰드에 캐스팅하여 얻은 원통형 알루미나 몰드를 사용하여 활성탄의 양과 소결온도에 따른 수축율 변화와 마모에 대한 저항성을 측정하였다. 다공질 알루미나 몰드의 소결에서는 비수축 소결구인 표면확산에 의해 입자간 넥 강도의 증진을 통한 몰드의 강도 증진을 도모하는 것이 바람직하며, 이를 위해 1,00$0^{\circ}C$이하에서 유지시간의 변화에 따른 열역학적 방법, 1,00$0^{\circ}C$이상의 온도에서 알루미나의 수축을 억제하면서 빠른 승온속도를 열처리온도에 따른 동역학적 방법과 이 두가지 방법을 혼합하는 방법 등으로 구분하여 다동질 알루미나 몰드의 소결조건을 분석하였다. 위 방법들에 대한 다공질 알루미나 몰드의 캐스팅 특성을 분석한 결과, 복합 소결법이 최적임을 알수 있었다. 제조된 다공질 알루미나 몰드의 비교적 높은 강도를 보였으며, 석고몰드레 비해 빠른 건조시간, 산, 염기에 대한 내식성 및 캐스팅 특성이 우수하였다.

  • PDF

슬러리 캐스팅과 흡인주조기술을 이용한 알루미늄 금형의 쾌속제작 (Rapid Tooling of Aluminum Mold Using Slurry Casting and Vacuum Sealed Casting)

  • 정해도;배원병
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.277-282
    • /
    • 2000
  • The RP&M (Rapid prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. In this paper, RP&M is applied to a casting process. A casting process has a merit of being able to reflect complicated shapes at one time. But it has not been applied to the precision industry because of bad quality on surface. So we will improve characteristics of aluminum casting process using vacuum sealed casting process and porous ceramic mold which is made by slurry casting process.

  • PDF

알루미나몰드를 사용한 슬립캐스팅법에 의한 3Y-TZP/SUS316계 경사기능재료의 제조 (Fabrication of 3Y-TZP/SUS316 Functionally Graded Material by Slip Casting Method Using Alumina Mold)

  • 여정구;정연길;이세훈;최성철
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.70-78
    • /
    • 1997
  • 3Y TZP/SUS316계 경사기능재료를 슬립캐스팅법을 이용하여 제조하였다. 슬립캐스팅 공정에서 석고몰드를 대체하기 위해 알루미나몰드를 제조하였고, 3Y-TZP/SUS316 2상 슬러리의 최적 분산조건을 ESA, 점도계, 침전거동의 관찰 등을 통해 결정하였으며, 석고몰드와 알루미나몰드로 캐스팅한 시험편의 제반 특성을 소결수축율변화, 건조 및 소결거동, 미세구조 관찰 등으로 조사하였다. 그 결과 알루미나몰드를 사용하여 제조된 시험편에서는 석고몰드 사용시 나타나는 표면에서의 오염이 관찰되지 않았으며, 각 층의 두께조절이 쉬웠고 높은 재현성을 나타냄을 알 수 있었다. 특히 알루미나몰드를 사용하여 제조한 SUS316에서는 어떤 열화현상도 관찰되지 않았다. 결국 슬립캐스팅 공정으로 3Y-TZP/SUS316계 경사기능재료를 제조함에 있어서 기존의 석고몰드보다 다공질 알루미나몰드의 사용이 바람직하다는 것을 알 수 있었다.

  • PDF

반응소결법으로 제조한 Al기 복합재용 Fe-Al합금 예비성형체의 특성평가 (Characteristic Evaluation of the Fe-Al Alloy Preform Fabrication by Reactive Sintering Process for the Al Matrix Composites.)

  • 최답천;박성혁;주형곤
    • 한국주조공학회지
    • /
    • 제19권6호
    • /
    • pp.493-500
    • /
    • 1999
  • Squeeze casting was used for fabricating a light metal base composite having high strength and wearresistance. Reactive sintering was used to prepare the preform of Squeeze casting. To utilize Fe-Al intermetallic compounds and SiC particle as a reinforcement, there needs to prepare Fe-Al mixed powder at 50, 60, 70at.%Al, and add SiC powder to the above mixture at 4, 7, 16, 24wt.%. The prepared mixture with SiC was reactive sintered in a tube furnace at $660^{\circ}C$ to get a porous hybrid preform of intermetallic compound and SiC. The preform prepared above was placed in a metal mold, preheated at $660^{\circ}C$ AC4C matrix was injected into the mold with the temperature of the melt at $610^{\circ}C$ After these processes, 66MPa was applied to the mold for 5 minute to finish the whole procedure. The maximum reaction temperature was increased with the increased Al amount, but decreased with the increased SiC amount. The density of the preform was decreased with SiC amount increase in the compacts due to swelling of the preform. An optical microscope was applied to observe the micro structure and the dispersion of the reinforcements. To analyze phases, We utilized XRD, EDS. Hardness test were chosen to get the information of mechanical properties. There were no significant changes in micro structure between the composite and preform. However, it was shown that uniform dispersion of the reinforcers and complete infiltration of the melt into the preform were achieved through the procedure of the squeeze casting. It was observed that the hardness of the composite is decreased with increased SiC amount, resulting from the volumetric expansion of the preform.

  • PDF