• Title/Summary/Keyword: porous bluff-body

Search Result 2, Processing Time 0.016 seconds

On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • In this work the flow through a hollow porous 5:1 rectangular cylinder made of perforated plates is numerically investigated by means of 2D URANS based simulations. Two approaches are adopted to account for the porous surfaces: in the first one the pores are explicitly modeled, so providing a detailed representation of the flow. In the second one, the porous surfaces are modeled by means of pressure jumps, which allow to take into account the presence of pores without reproducing the flow details. Results obtained by using the two aforementioned techniques are compared aiming at evaluating differences and similarities, as well as identifying the main flow features which might cause discrepancies. Results show that, even in the case of pores remarkably smaller than the immersed body, their arrangement can lead to local mechanisms able to affect the global flow arrangement, so limiting the accuracy of pressure jumps based simulations. Despite that, time-averaged fields often show a reasonable agreement between the two approaches.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.