• Title/Summary/Keyword: porosity models

검색결과 128건 처리시간 0.024초

Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models

  • Ghandourh, Emad E.;Abdraboh, Azza M.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.293-305
    • /
    • 2020
  • This article presented a nanoscale modified continuum model to investigate the free vibration of functionally graded (FG) porous nanobeam by using finite element method. The main novelty of this manuscript is presenting effects of four different porosity models on vibration behaviors of nonlocal nanobeam structure including size effect, that not be discussed before The proposed porosity models are, uniform porosity distribution, symmetric with mid-plane, bottom surface distribution and top surface distribution. The nano-scale effect is included in modified model by using the differential nonlocal continuum theory of Eringen that adding the length scale into the constitutive equations as a material parameter constant. The graded material is distributed through the beam thickness by a generalized power law function. The beam is simply supported, and it is assumed to be thin. Therefore, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Results demonstrate effects of porosity type, material gradation, and nanoscale parameters on the free vibration of nanobeam. The proposed model is effective in vibration analysis of NEMS structure manufactured by porous functionally graded materials.

Post-buckling responses of functionally graded beams with porosities

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.579-589
    • /
    • 2017
  • The objective of this work is to analyze post-buckling of functionally graded (FG) beams with porosity effect under compression load. Material properties of the beam change in the thickness direction according to power-law distributions with different porosity models. It is known that post-buckling problems are geometrically nonlinear problems. In the nonlinear kinematic model of the beam, total Lagrangian finite element model of two dimensional (2-D) continuum is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution, porosity parameters, compression loads on the post-buckling behavior of FG beams are investigated and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in post-buckling case.

Geometrically nonlinear analysis of functionally graded porous beams

  • Akbas, Seref D.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.59-70
    • /
    • 2018
  • In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

Effects of porosity models on static behavior of size dependent functionally graded beam

  • Hamed, Mostafa A.;Sadoun, Ayman M.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.89-98
    • /
    • 2019
  • In this study, the mechanical bending behaviors of functionally graded porous nanobeams are investigated. Four types of porosity which are, the classical power porosity function, the symmetric with mid-plane cosine function, bottom surface distribution and top surface distribution are proposed in analysis of nanobeam for the first time. A comparison between four types of porosity are illustrated. The effect of nano-scale is described by the differential nonlocal continuum theory of Eringen by adding the length scale into the constitutive equations as a material parameter comprising information about nanoscopic forces and its interactions. The graded material is designated by a power function through the thickness of nanobeam. The beam is simply-supported and is assumed to be thin, and hence, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Numerical results show effects of porosity type, material graduation, and nanoscale parameters on the static deflection of nanobeam.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

불포화 다공질매질의 물성치 측정을 위한 실험적 연구 (A Study on the Estimation of Physical Parameters of Unsaturated Porous Media in the Laboratory)

  • 김만일
    • 지질공학
    • /
    • 제14권2호
    • /
    • pp.169-177
    • /
    • 2004
  • 포화 및 불포화 상태로 이루어진 지반 내에서 지하수의 함량 및 오염물질의 침투 이동은 지반을 구성하고 있는 다공질 매질의 공극률과 유효공극률에 매우 큰 영향을 받는다. 본 연구는 불포화 매질에 대한 유효공극률을 측정하기 위해서 Frequency domain reflectometry(FDR) system 및 측정센서를 개발하여 실내실험을 수행하였다. 또한 측정된 유전율상수의 관계로부터 유효공극률을 산정할 수 있는 유전을 믹싱모델(dielectric mixing model)을 제안하였다. 실험결과에서 불포화 흙 시료인 표준사(standard sand)와 강모래(river sand)의 유효공극률의 범위는 공극률과 비교해 약 65∼85% 내외에서 측정되었다. 특히, 측정된 유효공극률과 공극률의 관계에서 공극률이 증가할수록 유효공극률은 다소 감소하는 경향을 보이는 것으로 측정되었다. 이는 흙 입자사이의 공극 내에 존재하는 미량의 공기에 의한 것으로써 불포화 상태의 흙 칼럼이 충분히 포화 상태에 도달하지 못하였기 때문이다.

An experimental approach for estimating the porosity and effective porosity of porous media by permittivity methods

  • Nishigaki M.;Komatsu M.;Kim M.-I.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.703-710
    • /
    • 2003
  • In the sub-surface environments, detection of the movement of contaminant substances and recharge of groundwater by rainfall are very important factors which contain porosity and effective porosity of porous media. In this paper, the applicability of permittivity methods and proposed dielectric mixing models (DDMs) are discussed. This study showed that the ratio of effective porosity to porosity of Toyoura and River sands were 0.856 and 0.843. From the relationships between the relative porosity and effective porosity, all measured values can be confirmed to outside the range to about 0.800 for Toyoura and River sands under all experiments by FDR and FDR-V systems. In the study, this permittivity equipment can be considered to be good enough to measure determining the physical parameters of saturated soils. Consequently, this permittivity method can be contributed to estimate a porosity and effective porosity of saturated porous media because it is easy and instantaneous than previous in-situ methods.

  • PDF

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

Neutral surface-based static and free vibration analysis of functionally graded porous plates

  • J.R. Cho
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.431-440
    • /
    • 2023
  • The functionally graded (FG) porous plates are usually characterized by the non-symmetric elastic modulus distribution through the thickness so that the plate neutral surface does not coincide with the mid-surface. Nevertheless, the conventional analysis models were mostly based on the plate mid-surface so that the accuracy of resulting numerical results is questionable. In this context, this paper presents the neutral surface-based static and free vibration analysis of FG porous plates and investigates the differences between the mid- and neutral surface-based analysis models. The neutral surface-based numerical method is formulated using the (3,3,2) hierarchical model and approximated by the last introduced natural element method (NEM). The volume fractions of metal and ceramic are expressed by the power-law function and the cosine-type porosity distributions are considered. The proposed numerical method is demonstrated through the benchmark experiment, and the differences between two analysis models are parametrically investigated with respect to the thickness-wise material and porosity distributions. It is found from the numerical results that the difference cannot be negligible when the material and porosity distributions are remarkably biased in the thickness direction.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.