• Title/Summary/Keyword: porosity control

Search Result 293, Processing Time 0.027 seconds

Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Shin Haeng;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • The use of aluminum-based coagulants in water pretreatment is being carefully considered because aluminum exposure is a risk factor for the onset of Alzheimer's disease. Lightly burned-dolomite kiln dust (LB-DKD) was evaluated as an alternative coagulant because it contains high levels of the healthful minerals calcium and magnesium. An organic pore forming agent (OPFA) was incorporated to prepare porous granules after OPFA removal through a thermal decomposition process. A spray drying method was used to produce uniform and reproducible spherical granules with low density, since fine dolomite particles have irregular agglomeration behavior in the hydration reaction. The use of fine dolomite powder and different porosity granules led to a visible color change in raw algae (RA) containing water, from dark green to transparent colorlessness. Also, dolomite powders and granules exhibited a mean removal efficiency of 48.3% in total nitrogen (T-N), a gradual increase in the removal efficiency of total phosphorus (T-P) as granule porosity increased. We demonstrate that porous dolomite granules can improve the settling time and water quality in summer seasons for the emergent treatment of excessive algal blooms in eutrophic water.

A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method (레이저 위빙을 이용한 Al 6k21-T4 합금의 용접 강도 향상)

  • Kim, Byung-Hun;Kang, Nam-Hyun;Park, Yong-Ho;Ahn, Young-Nam;Kim, Cheol-Hee;Kim, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.49-53
    • /
    • 2009
  • For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength.

Effect of Soil Amendments at Heavy Traffic Area in Golf Course (골프장 답압지역의 토양개량)

  • 태현숙;김용선;고석구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.107-113
    • /
    • 2000
  • The purpose of this study is to investigate the effects of soil amendments for reducing soil compaction at heavy traffic area in golf course. Major results of this research are summarized at follows: 1. In the Lab. experiment, the porosity was improved significantly when the materials, such as peatmoss, charcoal, and tire chip mixtures were used respectively. Especially mixture of sand and 20% peatmoss showed higher effectiveness (10%) in porosity, comparing with ordinary sand. This soil mixture(sand 80%+peatmoss 20%) was observed the best in water retention, soil hardness and hydrauric conductivity. 2. In the greenhouse experiment, traffic pressure was given 7 times a day on several combination of mixture treatments to see the top dry weight. The soil mixture of 20% peatmoss showed the highest in the top dry weight. When the more traffic pressure(15 time/day) were given on the different treatment, the top dry weight was significantly reduced. However, the mixture of 20% peatmoss also had the least influence on this type of heavy traffic. 3. In the field experiment, the soil amendments were treated in traffic area f golf course, and observed at 30days, 60days, 90days, 120days after treatment. Visual turf quality(color), root length and soil compaction were compared to those of control. As a result, overall treatments with soil amendments were effective, which showed better turf quality and less soil compaction. 4. In the field test, physical characters of soil (such as soil hardness and hydrauric conductivity) in sand+tire chip+peatmoss(60:20:20, %, v/v) treatment was significantly improved. Also in the slow increasing of traffic, the soil compaction was the most effective in reducing soil hardness.

  • PDF

Economic Evaluation of Crops Grown under Different Soil Improvement Methods in Newly-reclaimed Sloped Land (신개간지(新開墾地) 토양개량방법별(土壤改良方法別) 작물(作物)의 경제성(經濟性) 검정(檢定))

  • Hur, Bong Koo;Kim, Moo Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.256-260
    • /
    • 1995
  • This study was carried out to select economic-crops according to the improvement methods of newly-reclaimed soils. Silage corn, soybean, Job's tears and sweet potato were cultivated under 6 treatments including integrated improvement plot, control plot, compost plot, subsoiling plot, phosphate plot and lime plot on the Songjeong loam from 1985 to 1988. Crop yields and soil physical properties were investigated throughout the experiment. Soil porosity in the sweet potato plots were highest. In case of cultivated years, those of 4th year were lowest. Averaged yield increasing ratios of silage corn, soybean, job`s tears and sweet potato in the integrated improvement plots were 132%, 29%, 49% and 59%, respectively. And that of 5 soil improved treatments for 4 crops were 53%, 15%, 25% and 38%, respectively. After subtraction of the total expenses of soil conditioners, the economical efficiency of soil improvements were clear in the 4 crops except the compost plot of silage corn. That of sweet potato plot was the highest.

  • PDF

A Study on the Possibility of Bulk Graphite Manufacturing using Coal Tar as a Binder and an Impregnant (콜타르를 결합재 및 함침재로 이용한 벌크 흑연 제조)

  • Lee, Sang-Min;Lee, Sang-Hye;Kang, Dong-Su;Roh, Jae-Seung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.51-56
    • /
    • 2021
  • This paper studied the possibility of manufacturing bulk graphite using coal tar, a precursor of coal tar pitch, as a binder and impregnant. Carbonization was conducted after mixing and molding with natural graphite as a filler and coal tar as a binder. Impregnation-recarbonization was performed five times after carbonization. Coal tar used as impregnant. Measuring density, porosity, compressive strength, and anisotropy ratio was conducted. The maximum density of bulk graphite specimen was 1.76 g/㎤ and the minimum porosity was 15.6% which could be controlled by process control. The highest compressive strength was 20.3 MPa. Then the maximum anisotropic ratio of bulk was shown 0.34 through XRD analysis. Therefore, it was confirmed that it was possible to manufacture artificial graphite in a bulk form by using coal tar as a binder and an impregnant.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

The development of encoded porous silicon nanoparticles and application to forensic purpose (코드화 다공성 실리콘 나노입자의 개발 및 법과학적 응용)

  • Shin, Yeo-Ool;Kang, Sanghyuk;Lee, Joonbae;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • Porous silicon films are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid(HF). Careful control of etching conditions (current density, etch time, HF concentration) provides films with precise, reproducible physical parameters (morphology, porosity and thickness). The etched pattern could be varied due to (1) current density controls pore size (2) etching time determines depth and (3) complex layered structures can be made using different current profiles (square wave, triangle, sinusoidal etc.). The optical interference spectrum from Fabry-Perot layer has been used for forensic applications, where changes in the optical reflectivity spectrum confirm the identity. We will explore a method of identifying the specific pattern code and can be used for identities of individual code with porous silicon based encoded nanosized smart particles.

Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology (바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작)

  • Mose Kwon;Jong-Han Choi;Kwang-Taek Hwang;Jung-Hoon Choi;Kyu-Sung Han;Ung-Soo Kim;Jin-Ho Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.285-294
    • /
    • 2023
  • Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

Physical and Chemical Properties of Coal Fly Ash Ball Substrates, the Salt Accumulation and the Effects of Washing Out Salt with Water (석탄회성형배지(Ash Ball)의 이화학적 특성과 염류집적 및 제거효과)

  • Li, Xian-Ri
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.88-94
    • /
    • 2001
  • Physical and chemical properties, the salt accumulation and leaching of salt by water of coal fly ash ball (ash ball) were evaluated in comparison with perlite and granule rockwool (rockwool). Bulk density, particle density, solid phase, and porosity of ash ball were 0.93 g.cm$^{-3}$ , 2.29 g.cm$^{-3}$ , 40.6%, 59.4%, respectively. The bulk density of ash ball was greater, while porosity was smaller, than that of perlite and rockwool. Saturation moisture capacity was 52% in ash ball, 71% in perlite, and 90% in rockwool. Water contents after drainage for 1 hr of ash ball, perlite, and rockwool were 21%, 27%, and 80%, respectively. Water content of small granules (3-5 mm) of ash ball was 5% greater than that of large (7-15 mm) grannules. The ash ball was a weak alkali substrate with pH 7.6, but not electric conductivity (EC), of the nutrient solution supplied to ash ball slightly increased. When the absorption of mineral ions to substrates were analyzed, ash ball and RW absorbed mainly PO ̄$_4$. On tomato culture, salt accumulation in ash ball substrate was similar to that in perlite. Most of the salts in the ash balls were removed by submerging the substrate eight times in distilled water. It is concluded that water holding capacity of ash ball substrate was lo as compared to other substrates, but air permeability, and water diffusion was excellent, making control of medium water content easy.

  • PDF