• Title/Summary/Keyword: porewater pressure

Search Result 48, Processing Time 0.028 seconds

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-102
    • /
    • 1992
  • Landslides on hillside slopes with shallow soil cover over a sloping bedrock are frequently caused by increases in porewater pressures following of heavy rainfall and it is one of the most important factors of assessing the risk of landslide to predict the groundwater level fluctuations in hillslopes. This paper presents the comparative study of three unsaturated flow models developed by Sloan et al., Reddi, L.N., and Thomas, H.A., Jr., respectively, which are used to predict the increase of groundwater levels in hillside slopes. The parametric study for each of models is also presented. The Kinematic Storage Model(KSM) developed by Sloan et at. is utilized to predict the saturated groundwater flow. They are applied to the two sites in Korea so as to examine the possibility of use in the groundwater flow model. The results show that two unsaturated models developed by Sloan et al. and Reddi, L. N. are largely affected by the uncertain parameters like saturated permeability and saturated water content : the abed model has the potential of use in unsaturated flow model with the optimal estimates of model parameters utilizing available optimization techniques. And it is also found that the KSM must be modified to account for the time delay effect in the saturated zone. The results of this paper are able to be utilized in developing the predictive model of groan dwater level fluctuations in a hillslope.

  • PDF

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

Sampling and Analysis of Soil Pore Water for Predicting the Diffusion and Behavior of Soil Pollutant Using Soil Lysimeter (토양라이시미터를 이용한 토양오염확산.거동 예측을 위한 토양공극수 채취와 분석)

  • Ko, Il-Won;Lee, Se-Yong;Kim, Kyoung-Woong;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.551-561
    • /
    • 2007
  • This case study is about the sampling and interpretation of soil pore water in order to understand and to predict the diffusion and behavior of soil pollution. For the measurement of polycyclic aromatic hydrocarbons(PAHs) in two representative hydrocarbon-contaminated sites, the extraction system of the soil pore water was set up with respect to soil depths and the behavior of contaminants was interpreted. The soil solution extraction system consisted of peristaltic pump, and extraction and sampling compartment, and can measure simultaneously the soil water pressure. The concentration of PAHs with respect to extraction pressure and time decreased due to dilution through soil pore water. Particularly, the concentration of PAHs was more reduced under the unsaturated oxic condition than saturated anoxic condition. Therefore, the soil solution extraction with respect to soil water pressure can interpret the extent of equilibrium between porewater and soil surface.

Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • 변위용;김영상;이승래;정은택
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.17-25
    • /
    • 2004
  • The flat dilatometer test (DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indices - material index $(I_D)$, horizontal stress index $(K_D)$, and dilatometer modulus (E$_{D}$) and the undrained shear strength has been estimated merely using the horizontal stress index $(K_D)$. In this paper, the applicability of the flat dilatometer to Korean soft clay deposit has been investigated. Then an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0, p_1, p_2, {\sigma '}_v$ and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

Evaluation of Surcharging to Reduce Secondary Consolidation for Kunsan Clay (군산점토의 2차압밀 감소를 위한 Surcharging 평가)

  • 주종진;임형덕;이우진;김대규;김낙경;김형주
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.127-135
    • /
    • 2002
  • The accurate evaluation of settlement is important to every steps in the constructions involving soft soils. Relating with those constructions, especially, it has been emphasized recently that the influnce of secondary settlement is important. The ratio of $C_a/C_c$ and the surcharging tests can be applied collaboratively to predicting and reducing secondary consolidation. A series of incremental loading consolidation test and surcharging tests for undisturbed samples of Kunsan clay were performed in this study. As a result of the tests, the ratio of $C_a/C_c$ for the clay was found to be 0.0329. Also, the relationship between void ratio and $t/t_p$ was shown to be linear. Accordingly, the secondary compression index, $C_a for a long term loading had a constant value regardless of time. When the total surcharge ratio was 0.4 and the dissipation ratio of excessive porewater pressure was in the range from 80% to 100%, secondary settlement was effectively reduced for Kunsan clay.

Application of flat DMT and ANN for reliable estimation of undrained shear strength of Korean soft clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • Byeon, Wi-Yong;Kim, Young-Sang;Lee, Seung-Rae;Jeong, Eun-Taeg
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.154-161
    • /
    • 2004
  • The flat dilatometer test(DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indicesmaterial index($I_p$), horizontal stres index($K_p$), and dilatometer modulus($E_p$) and the undrained shear strength is estimated only by using the horizontal stress index($K_D$). In this paper, an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0,\;p_1,\;p_2,\;{\sigma}'_v_0$, and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

  • PDF

Nonlinear Consolidation Model Using an Extended Power Function (확장멱함수모형을 이용한 비선헝 압밀속도 모형의 개발)

  • 원정윤;장병욱
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.181-190
    • /
    • 1998
  • One-Dimensional Nonlinear Consolidation Model(NCM) ivas developed by using an Extended Power Function Model, which could represent the compressibility of soils. A nonlinear finite element program for NCM was developed to analyze the porewater pressure dissipation and the settlement of saturated soils. Parameters used in compressibility model could be easily obtained from conventional oedometer test data. This model has been applied to Yansan-Mulgum area for the comparison with the results of CONSOL program and that of Terzaghi theory. A Good The rates of consolidation predicted by this model and CONSOL were faster than that of conventional Tergaghi theory, for they consider the nonlinear characteristics of soils. Consolidation curves of this model were located between Terzaghi and CONSOL curves. Consolidation curves near drainage boundary, where effective stress valied rapidly, seemed to reflect the variations of compressibility of sails. Consolidation curves near drainage boundary obtained from this model were composed of two parabolic curves. Intersection of the parabolic curves occurred when effective stress reached the value of preconsolidation stress. Moreover, thin model could be used to represent the effect of magnitude of applied load. whereas CONSOL and Terazghi theory could not.

  • PDF

Evaluation of Applicability of Platform Fill Horizontal Drain Pipe System (선재하 수평배수관망 시스템의 적용성 평가)

  • Yoo, Chanho;Han, Yeonjin;Kang, Sooyoung;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.77-83
    • /
    • 2012
  • The most of horizontal drainages, which is composed of the aggregates made of sand and crushed stone, are used to improve the soft ground. However, where the aggregates are used as the horizontal drainage, it often brings about the delay of consolidation. For this reason, the horizontal drain pipe system is applied to properly improve the soft ground using a drainage pipe instead of horizontal drainage. This system is direct drain method for disappearing the excess porewater pressure which is caused by placing of fill on the soft ground. The large-scale field test was conducted in order to evaluate the applicability and constructability of the horizontal drain pipe system. The settlement characteristics of improved ground with horizontal drain pipe system was observed. It is also compared to the conventional soft ground improvement method to confirm its effectiveness.

A methodological approach for slope stability analysis in Steady state infiltration (정상류 침투를 가정한 강우시 사면안정해석기법)

  • Song, Pyung-Hyun;You, Byung-Ok;Ahn, Kwang-Kuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.736-744
    • /
    • 2009
  • The abrupt failure of slope caused by a concentrated rainfall would be a disaster in this country. Specially, the soil slope may be collapsed by the rainfall seepage, however, there is not much information for the mechanism of slope failure during rainfall. As analyzing the stability of slope by rainfall, the conventional method is to put the ground-water level on the surface of slope. However, it may provide the over-reinforcement for the slope stability. Futhermore, although over-reinforcement for the slope was fulfilled, the possibility of potential slope failure still exists. In this study, the slope stability by the conventional design method and the causes of unstable slope during rainfall were investigated. To analyze the slope stability by rainfall, the computer program SEEP/W for the analysis of seepage was used. As changing the intensity and duration of rainfall in SEEP/W, the analysis were performed. After completion of analysis, the porewater pressure data from SEEP/W was applied to SLOPE/W. As a results of this analysis, it is not reasonable that the groundwater level is going up to the surface of slope during rainfall. Therefore, the conventional reinforcement for the slope stability is not obvious to satisfy the criterion safety factor during rainfall. The reasonable counterplan is to install drainage hole on the surface of slope in order to prevent erosion and debris flow.

  • PDF

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads (파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석)

  • Kang, Gi-Chun;Yun, Seong-Kyu;Kim, Tae-Hyung;Kim, Dosam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.