• Title/Summary/Keyword: pore network

Search Result 102, Processing Time 0.024 seconds

Analysis of Contaminant Transport in the Ground using the Lattice-Boltzmann Method (격자 볼츠만 방법에 의한 지반 내 오염물질의 거동 분석)

  • Kang, Dong Hun;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.267-274
    • /
    • 2012
  • The conventional approach to evaluate the contaminant transport in soils adopts the macro-scale implementation while the pore configuration and network is a dominant factor to determine the fate of contaminant. However, the observation of fate and transport at pore scale may not be readily approachable because of the computational expenses to solve Navier-Stokes equation. We herein present the 2D Lattice-Boltzmann method that enables to assess the local fluid velocity and density efficiently for the case of single phase and multi-components. The solute fate spatio-temperal space is explicitly determined by the advection of fluid flow. Two different types of idealized pore space provides the path of fluid. Also, solute transport, the velocity field and average concentration of solute are computed in steady state. Results show that the pore geometry such as tortuosity mainly affect the solute fate. It highlights the significance of the pore configuration and shape in granular soils and rock discontinuity in spite of the equivalent porosity.

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Analysis of Mass Transport in PEMFC GDL (연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구)

  • Jeong, Hee-Seok;Kim, Jeong-Ik;Lee, Seong-Ho;Lim, Cheol-Ho;Ahn, Byung-Ki;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.979-988
    • /
    • 2012
  • The 3D structure of GDL for fuel cells was measured using high-resolution X-ray tomography in order to study material transport in the GDL. A computational algorithm has been developed to remove noise in the 3D image and construct 3D elements representing carbon fibers of GDL, which were used for both structural and fluid analyses. Changes in the pore structure of GDL under various compression levels were calculated, and the corresponding volume meshes were generated to evaluate the anisotropic permeability of gas within GDL as a function of compression. Furthermore, the transfer of liquid water and reactant gases was simulated by using the volume of fluid (VOF) and pore-network model (PNM) techniques. In addition, the simulation results of liquid water transport in GDL were validated by analogous experiments to visualize the diffusion of fluid in porous media. Through this research, a procedure for simulating the material transport in deformed GDL has been developed; this will help in optimizing the clamping force of fuel cell stacks as well as in determining the design parameters of GDL, such as thickness and porosity.

The Effect of Flow Rate on the Process of Immiscible Displacement in Porous Media (다공성 매체 내 비혼성 대체 과정에서 주입 유량이 거동 양상에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • A series of experiments using transparent micromodels with an artificial pore network etched on glass plates was performed to investigate the effects of flow rate on the migration and distribution of resident wetting porewater (deionized water) and injecting non-wetting fluid (n-hexane). Multicolored images transformed from real RGB images were used to distinguish n-hexane from porewater and pore structure. Hexane flooding followed by immiscible displacement with porewater, migration through capillary fingering, preferential flow and bypassing were observed during injection experiments. The areal displacement efficiency increases as the injection of n-hexane continues until the equilibrium reaches. Experimental results showed that the areal displacement efficiency at equilibrium increases as the flow rate increases. Close observation reveals that preferential flowpaths through larger pore bodies and throats and clusters of entrapped porewater were frequently created at lower flow rate. At higher flow rate, randomly oriented forward and lateral flowpaths of n-hexane displaces more porewater at an efficiency close to stable displacement. It may resulted from that the pore pressure of n-hexane, at higher flow rate, increases fast enough to overcome capillary pressure acting on smaller pore throats as well larger ones. Experimental results in this study may provide fundamental information on migration and distribution of immiscible fluids in subsurface porous media.

Microstructure of Non-Sintered Inorganic Binder using Phosphogypsum and Waste Lime as Activator

  • Kim, Ji-Hoon;An, Yang-Jin;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.305-312
    • /
    • 2018
  • This study is about the development of a non-sintered binder (NSB) which does not require a sintering process by using the industrial by-products Phosphogypsum (PG), Waste Lime (WL) and Granulated Blast Furnace Slag (GBFS). In this report, through SEM analysis of the NSB paste hardening body, micropore analysis of paste using the mercury press-in method and microstructure observation were executed to consider the influence of the formation of the pore structure and the distribution of pore volume on strength, and the following conclusions were reached. 1) Pore structure of NSB paste of early age is influenced by hydrate generation amount by GBFS and activator. 2) Through observing the internal microstructure of NSB binder paste, it was found that the strength expression at early age due to hydration reaction was achieved with a large amount of ettringite serving as the frame with C-S-H gel generated at the same time. It was confirmed that C-S-H gel wrapped around ettringite, and as time passed, the amount generated continually increased, and C-S-H gel tightly filled the pores of hardened paste, forming a dense network-type web structure. 3) For NSB-type cement, the degree of formation of gel pores below $10{\mu}m$ had a greater influence on strength improvement than simple pore reduction by charging capillary pores, and the pore size that had the greatest effect on strength was micropores with diameter below $10{\mu}m$.

The Effect of Temperature on the Process of Immiscible Displacement in Pore Network (공극 구조 내 비혼성 대체 과정에서 주입 온도가 유체 거동에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • The viscous force of fluids and the capillary force acting on the pore network of the porous media are important factors determining the immiscible displacement during geological $CO_2$ sequestration, these were directly affected by geological formation conditions and injection conditions. This study aimed to observe the migration and distribution of injected fluid and pore water, and quantitatively investigate displacement efficiency on various injection temperatures. This study aimed to perform micromodel experiments by applying n-hexane used as a proxy fluid for supercritical $CO_2$. In this study, immiscible displacement process from beginning of n-hexane injection to equilibrium of the distribution of the n-hexane and pore water was observed. The images from experiment were used to observe the displacement pattern and estimate the areal displacment efficiency of the n-hexane. For investigate the affects of the injection temperatures on the migration in macroscopic, migration of n-hexane in single pore was analyzed. The measurement revealed that the displacement efficiency at equilibrium state decreases as the temperature increases. The result from experiments indicate that the temperatures can affect the displacement pattern by changing the viscous forces and the capillary forces. The experimental results could provide important fundamental information on reservoir conditions and fluid injection conditions during geological $CO_2$ sequestration.

A STUDY ON NUMERICAL COUPLING BETWEEN MECHANICAL AND HYDRAULIC BEHAVIORS IN A GRANITE ROCK MASS SUBJECT TO HIGH-PRESSURE INJECTION

  • Jeong, Woo-Chang;Jai-Woo;Song, Jai-Woo
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.123-138
    • /
    • 2001
  • An injection experiment was carried ut to investigate the pressure domain within which hydromechanical coupling influences considerably the hydrologic behavior of a granite rock mass. The resulting database is used for testing a numerical model dedicated to the analysis of such hydromechanical interactions. These measurements were performed in an open hole section, isolated from shallower zones by a packer set at a depth of 275 m and extending down to 840 m. They consisted in a series of flow meter injection tests, at increasing injection rates. Field results showed that conductive fractures from a dynamic and interdependent network, that individual fracture zones could not be adequately modeled as independent systems, that new fluid intakes zones appeared when pore pressure exceeded the minimum principal stress magnitude in that well, and that pore pressures much larger than this minimum stress could be further supported by the circulated fractures. These characteristics give rise to the question of the influence of the morphology of the natural fracture network in a rock mass under anisotropic stress conditions on the effects of hydromechanical couplings.

  • PDF

Electromagnetic Simulation of the Quality Factor and Microstructure of Microwave Dielectrics (마이크로파 유전체의 미세구조와 품질계수의 상관관계에 대한 컴퓨터 시뮬레이션)

  • Park, Jae-Hwan;Park, Jae-Gwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.146-150
    • /
    • 2001
  • Electromagnetic simulation was compared to the measurement with a network analyzer in the cavity resonator method which has been used for determining microwave quality factor. Scattering matrix $S_{12}$ obtained from the network analyzer was compared to the $S_{12}$ obtained from the simulation. The effects of the pore and the secondary phase of the dielectric resonator on the microwave quality factor were studied. From the simulated results, the dominant resonant $TE_{01\delta}$ mode was determined and the quality factor was observed to decrease with the pore and the secondary phase in the dielectrics.

  • PDF

Three-dimensional Nanoporous Graphene-based Materials and Their Applications (3차원 나노 다공성 그래핀의 제조와 응용)

  • Jung, Hyun;Kang, Yein
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Electrochemical Properties of Carbonized Phenol Resin (탄화된 페놀레진의 전기화학적 성질)

  • 김한주;박종은;홍지숙;류부형;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.629-632
    • /
    • 1999
  • For replacing Li metal ai Lithium ton Bakery(LIB) system. we used carbon powder material which prepared by pyrolysis of phenol resin as starting material. It became amorphous carbon by pyrolysis through it\`s self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. however it has a problem with structural destroy causing weak carbon-carbon bond. So. we used ZnCl$_2$ as the pore-forming agent. This inorganic salt used together with the resin serves not only as the pore-forming agent to form open pores, which grow Into a three-dimensional network structure in the cured material, foul also as the microstructure-controlling agent to form a loose structure dope with bulky dopants. We analyzed SEM in order to find to different of structure. and can calculate distance of interlayer. CV test showed oxidation and reduction

  • PDF