• Title/Summary/Keyword: pore morphology

Search Result 292, Processing Time 0.026 seconds

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • Kim, Chang-Hwan;Kim, Cheon-Ho;Park, Hyeon-Suk;Gang, Hyeon-Ju;Han, Eun-Suk;Kim, Yun-Yeong;Choe, Yeong-Ju;Lee, Su-Hyeon;Choe, Tae-Bu;Son, Yeong-Suk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.429-432
    • /
    • 2000
  • Chitosan scaffold is widely applied to drug delivery and tissue engineering. We have developed chitosan scaffolds, with various pore size, by differing freezing temperature and duration of ultraviolet (UV) irradiation, for reconstructing skin equivalent. Chitosan scaffold was coated with type I collagen, fibronectin and basic fibroblast growth factor (bFGF) in various combinations and concentrations, to evaluate the effect of extracellular matrix (ECM) and bFGF on cell adhesion, growth and differentiation of dermal fibroblasts. Human dermal fibroblasts, isolated from newborn foreskin and passaged between 3 and 5, were seeded on the top of scaffolds and cultivated for 2 weeks. We examined the morphology and the secretion of ECM of fibroblasts using scanning electron microsopy (SEM) and histochemistry. A stellate morphology of fibroblasts were seen in all groups. The scaffold coated with either type I collagen and bFGF or type I collagen and fibronectin, however, showed the best condtion of dermal fibroblasts, in that the highest cell number and ECM secretion were seen. On the contrary, scaffolds coated with all three factors, type I collagen, bFGF and fibronectin, showed lower number of cells and ECM secretion than scaffolds with two factors. There was a tendency of dose-dependence in all three factors for fibroblast growth and ECM secretion. In conclusion, we may suggest that chitosan scaffold coated with either type I collagen/bFGF or type I collagen/fibronectin could provide more favorable environment for the growth and differentiation of dermal fibroblasts.

  • PDF

Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane

  • Sharma, Nilay;Purkait, Mihir Kumar
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.257-275
    • /
    • 2016
  • The enantiomeric and racemic effects of tartaric acid (TA) on the properties of polysulfone (PSn) ultrafiltration membranes were studied in terms of morphology and hydrophilicity (HPCT) of membrane. Asymmetric membranes were prepared by direct blending of polyvinyl pyrrolidone (PVP) with D-TA and DL-TA in membrane casting solution. FTIR analysis was done for the confirmation of the reaction of PVP and TA in blended membranes and plain PSn membranes. Scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM) were used for analyzing the morphology and structure of the resulting membranes. The membranes were characterized in terms of pure water flux (PWF), hydraulic permeability and HPCT. PWF increased from $52L/m^2h$ to $79.9L/m^2h$ for plain and D-TA containing PSn membrane, respectively. Water contact angle also found to be decreased from $68^{\circ}$ to $55^{\circ}$. In Additionally, permeation and rejection behavior of prepared membranes was studied by bovine serum albumin (BSA) solution. A considerable increase in BSA flux (from $19.1L/m^2h$ for plain membrane to $32.1L/m^2h$ for D-TA containing membrane) was observed. FESEM images affirm that the pore size of the membranes decreases and the membrane permeability increases from 0.16 to 0.32 by the addition of D-TA in the membrane. D-TA increases the HPCT whereas; DL-TA decreases the HPCT of PSn membrane. PVP (average molecular weight of 40000 Da) with D-TA (1 wt%) gave best performance among all the membranes for each parameter.

Chondrogenic Differentiation of Bone Marrow Stromal Cells in Transforming Growth $Factor-{\beta}_{1}$ Loaded Alginate Bead

  • Park, Ki-Suk;Jin Chae-Moon;Kim, Soon-Hee;Rhee John M.;Khang Gil-Son;Han, Chang-Whan;Yang, Yoon-Sun;Kim, Moon-Suk;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.285-292
    • /
    • 2005
  • We developed alginate beads loaded with transforming growth $factor-{\beta}_{1}(TGF-{\beta}_{1})$ to examine the possible application of the scaffold and cytokine carrier in tissue engineering. In this study, bone marrow stromal cells (BMSCs) and $TGF{\beta}_{1}$ were uniformly encapsulated in the alginate beads and then cultured in vitro. The cell morphology and shape of the alginate beads were observed using inverted microscope, scanning electron microscope (SEM), histological staining and RT-PCR to confirm chondrogenic differentiation. The amount of the $TGF{\beta}_{1}$ released from the $TGF-{\beta}_{1}$ loaded alginate beads was analyzed for 28 days in vitro in a phosphate buffered saline (pH 7.4) at $37^{\circ}C$. We observed the release profile of $TGF-{\beta}_{1}$ from $TGF-{\beta}_{1}$ loaded alginate beads with a sustained release pattern for 35 days. Microscopic observation showed the open cell pore structure and abundant cells with a round morphology in the alginate beads. In addition, histology and RT-PCR results revealed the evidence of chondrogenic differentiation in the beads. In conclusion, these results confirmed that $TGF-{\beta}_{1}$ loaded alginate beads provide excellent conditions for chondrogenic differentiation.

Characterization of LLDPE/CaCO3 Composite Drawn Film (연신된 LLDPE/CaCO3 composite film의 특성분석)

  • Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Han, Myung Dong;Seo, Jang Min;Seo, Min Jeong;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • The breathable film refers to a high-functional film that allows gas and water vapor to pass through very fine and sophisticated pores but not liquid. In this research, the breathable film was prepared based on linear low-density polyethylene (LLDPE) and CaCO3 particles by extrude method. The LLDPE composite film containing CaCO3 particles had excellent mechanical properties and functionalties. The drawing is a technologically simple and excellent method for improving the mechanical properties of composite films. In this work, the effects of draw ratio on morphology, crystallinity, pore size distribution, mechanical properties, and water vapor permeability of the films were examined. The results revealed that both surface morphology and breathability were affected by the influence of chain orientation and crystal growth with increasing the draw ratio. The mechanical properties were improved with increasing the draw ratio.

Preparation and application of the functionalized Shampoo with core-shell microcapsule (코아-쉘 마이크로 캡슐을 이용한 기능성 샴푸의 제조 및 응용)

  • Seo, Mi-Young;Kim, Eun-Ji;Kim, In-Kyoung;Choi, Seong-Ho
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • In this study, we prepared the functionalized Shampoo with three-type functionalized microcaples which were synthesized by microcapsulation, respectively. In detail, the functionalized microcapsule was included such as (1) the functionalized microcapsule with core-menthol and shell-melamine resin and (2) the functionalized microcapsule with core-menthol and shell-lecithin, and (3) the functionalized microcapsule with core-cinnamon oil and shell-lecithin, respectively. The size and morphology of the prepared microcapsules was evaluated via Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). From these results, the prepared microcapsules with size of 0.1~0.2 ㎛ and spherical morphology was confirmed. Furthermore, we applied the prepared Shampoo to treat hair. As results we confirmed that the scalp temperature was decreased about 3~4 ℃ compared to no treatment. This result may be considered that the core compounds are vaporize when the functionalized Shampoo is treated on scalp. We will determine the change of scalp pore, diameter of hair, and etc during treatment of the functionalized Shampoo.

Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents (순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조)

  • Kim, Young Kyoung;Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2015
  • This paper reports a fabrication of poly(L-lactic acid) (PLLA) scaffold membranes through phase separation process using pure and mixed solvents. Chloroform and 1,4-dioxane were used as pure solvents and mixed solvents were obtained by mixing the pure solvents together. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. Scaffold membranes from the solution with pure chloroform showed solid-wall pore structure. In contrast, nano-fibrous membranes were fabricated from the solution with pure 1,4-dioxane. In case of mixed solvents, the scaffold membranes showed various structures with changing composition of the solvents. When 1,4-dioxane content was lower than 20 wt% in the solvent, scaffold membrane showed solid-wall pore structure. When the content was 20 wt%, scaffold membranes with macropores with the maximum size of $100{\mu}m$ was obtained. In the concentration range of 1,4-dioxane over 25 wt%, the scaffold membranes showed nano-fibrous structures. In this range, the fibers showed different diameters with changing composition of the solvent. The minimum fiber diameter was about $15{\mu}m$, when 1,4-dioxane composition was 80 wt%. These results indicate that the composition of the solvent showed a significant effect on the structure of scaffold membrane.

Preparation of Activated Carbon from Waste Citrus Peels by ZnCl2 (ZnCl2를 이용하여 폐감귤박으로부터 활성탄 제조)

  • Kang, Kyung-Ho;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1091-1098
    • /
    • 2007
  • Activated carbon was prepared from waste citrus peels by chemical activation with $ZnCl_2$. The optimal condition of carbonization was at $300^{\circ}C$ for 1.5 hr. Activation experiments with carbonized samples prepared at optimal carboniztion condition were carried out under various conditions such as activation temperature of 400 to $900^{\circ}C$, activation time of 0.5 to 2.0 hr, and $ZnCl_2$ ratio of 100 to 300%. In order to investigate the physical properties of the activated carbons prepared, iodine adsorptivities and specific surface areas were measured and their morphologies were observed from scanning electron microscopy. As $ZnCl_2$ ratio increased, activation yield decreased, while iodine adsorptivity and specific surface area increased. The optimal condition of activation was at 300% $ZnCl_2$ ratio and $300^{\circ}C$ for 1.5 hr, and then iodine adsorptivity and specific surface area was measured as about 862 mg/g and $756m^2/g$, respectively. SEM photography showed that the surface morphology was changed and many active pore were produced by chemical activation.

A Study on Calcination and Reduction of AUC (Ammonium Uranyl Carbonate) -Characteristics and Phase Change of Powder- (AUC(Ammonium Uranyl Carbonate)의 하소 및 환원 반응 -분말의 특성 및 상변화-)

  • 김응호;최청송;박진호;장인순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.279-288
    • /
    • 1993
  • A study on calcination and reduction of AUC(ammonium uranyl carbonate, (NH4)4UO2(CO3)3) has been carried out by using TG-DTA in N2, air and H2 atmospheres, respectively. Phases of various intermediate obtained during thermal analysis of AUC in different atmospheres were confirmed by XRD. Powder characteristics of each intermediate were investigated by measuring particle size and specific surface area, and also observed by SEM. As a results, regardless of applied atmosphere AUC was calcined into amorphous UO3, which was converted to $\alpha$-U3O8 Via $\alpha$-UO3 in both H2 and N2 atmosphere, but directly into $\alpha$-UO3 in air atmosphere. Further reduction of U3O8 was only detectable in hydrogen atmosphere. During calcination and reduction, average particle size was reduced to less than 30% of original value without morphology change. Specific surface area was dramatically increased with release of NH3, CO2 and H2O from AUC powder and reached maximum value around 25$0^{\circ}C$, and then gradually decreased with the increase of temperature due to sintering effect of uranium oxides such as UO3 and U3O8. It was also found that the change of average crystallite size and pore size were closely related to the changes of specific surface area of uranium oxides.

  • PDF

Geometrically Inhomogeneous Random Configuration Effects of Pt/C Catalysts on Catalyst Utilization in PEM Fuel Cells (연료전지 촉매층 내 촉매활성도에 대한 탄소지지 백금 촉매의 기하학적 비등방성 효과에 관한 연구)

  • Shin, Seungho;Kim, Ah-Reum;Jung, Hye-Mi;Um, Sukkee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.955-965
    • /
    • 2014
  • Transport phenomena of reactant and product are directly linked to intrinsic inhomogeneous random configurations of catalyst layer (CL) that consist of ionomer, carbon-supported catalyst (Pt/C), and pores. Hence, electrochemically active surface area (ECSA) of Pt/C is dominated by geometrical morphology of mass transport path. Undoubtedly these ECSAs are key factor of total fuel cell efficiency. In this study, non-deterministic micro-scale CLs were randomly generated by Monte Carlo method and implemented with the percolation process. To ensure valid inference about Pt/C catalyst utilization, 600 samples were chosen as the number of necessary samples with 95% confidence level. Statistic results of 600 samples generated under particular condition (20vol% Pt/C, 30vol% ionomer, 50vol% pore, and 20nm particle diameter) reveal only 18.2%~81.0% of Pt/C can construct ECSAs with mean value of 53.8%. This study indicates that the catalyst utilization in fuel cell CLs cannot be identical notwithstanding the same design condition.

Fabrication and Characterization of 3-D Porous Collagen Scaffold (3차원 다공성 콜라겐지지체의 제조 및 특성 분석)

  • Kim, Jin-Tae;Lim, Sumin;Kim, Byoung Soo;Lee, Deuk Yong;Choi, Jae Ha
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.192-196
    • /
    • 2014
  • Collagen scaffolds were synthesized by cross linking into a solution mixture of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochlorid(EDC) in ethanol, followed by pressing, cleaning and lyophilization process after the type I atelo-collagen solutions in D.I water(pH3). The experimental conditions are collagen concentration of 1.0 wt%, 3.0 wt%, 5.0 wt% and differential concentration of cross-linker. Then, parametric studies were performed by varying the parameters to investigate the morphology, the porosity, the swelling ratio and the thickness and genotoxicity of the scaffolds. The scaffolds thickness pattern was regular to concentration of the degree of cross-linker and collagen. It was observed that the swelling ratio, the degree of crosslink, and the pore size(thickness of scaffold) can be controlled by adjusting the collagen, crosslinker. Among the parameters investigated, the smallest thickness can be achieved by collagen, crosslinker concentrate condition. The collagen scaffold is induced no genotoxicity. The lowest swelling ratio, as an indication of the highest degree of crosslink, can be obtained by adding crosslink agent.