• 제목/요약/키워드: pore architecture

검색결과 87건 처리시간 0.026초

Physical Properties of Indium Reduced Materials for Transparent Conductive Electrodes

  • Kwak, Seung-Hoon;Kwak, Min-Gi;Hong, Sung-Jei;Ju, Byeong-Kwon;Han, Jeong In
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.14-17
    • /
    • 2014
  • In this paper, indium reduced materials for transparent conductive electrodes (TCE) were fabricated and their physical properties were evaluated. Two of materials, indium-zinc-tin oxide (IZTO) and aluminum (Al) were selected as TCE materials. In case of IZTO nanoparticles, composition ratios of In, Zn and Sn is 8:1:1 were synthesized. Size of the synthesized IZTO nanoparticles were less than 10 nm, and specific surface areas were about $90m^2/g$ indicating particle sizes are very fine. Also, the IZTO nanoparticles were well crystallized with (222) preferred orientation despite it was synthesized at the lowered temperature of $300^{\circ}C$. Composition ratios of In, Zn and Sn were very uniform in accordance with those as designed. Meanwhile, Al was deposited onto glass by sputtering in a vacuum chamber for mesh architecture. The Al was well deposited onto the glass, and no pore was observed from the Al surface. The sheet resistance of Al on glass was about $0.3{\Omega}/{\square}$ with small deviation of $0.025{\Omega}/{\square}$, and adhesion was good on the glass substrate since no pelt-off part of Al was observed by tape test. If the Al mesh is combined with ink coated layer which is consistent of IZTO nanoparticles, it is expected that the good and reliable metal mesh architecture for TCE will be formed.

세라믹 분말을 이용한 나노 충격 완화 장치의 에너지 소산 효율 특성에 대한 연구 (Characteristics of Energy Dissipation in Nano Shock Suspension System Using Silica Gel)

  • 문병영;정성원
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.17-22
    • /
    • 2003
  • 본 연구에서는 나노기술을 이용하여 에너지 감쇠 기능을 활용한 감쇠기 개발에 대한 연구를 하였다. 유체 감쇠기를 대체하는 완충역할을 하는 미로구조를 가지는 실리카 겔 입자를 사용하였으며, 입자에 관련한 작동 유체로는 물을 사용하여 그 효과를 검증하였다. 콜로이드 감쇠기를 구현하기 인해서는 형성된 실리카 겔 입자의 표면을 유기 실리콘 매질을 이용한 소수화 코팅 처리를 하였다. 정적 하중 상태에서의 가역적 콜로이드 감쇠기에 대한 실험을 수행하였다. 콜로이드 감쇠기내 다공질 입자의 나노 유로(pore)와 다공성 입자의 직경, 다공성 입자의 구조, 그리고 대기압 상태에서 유체의 출입을 통제하기 위한 코팅처리의 분자 간 길이와 같이 여러 가지 요인의 콜로이드 감쇠기 이력현상에 대한 영향을 평가하였다. 감쇠기의 소산 에너지양과 효율에 대해서도 조사하여 유압 감쇠기 보다 뛰어난 결과를 얻었으며 콜로이드 감쇠기로 사용 가능하다는 사실을 입증하였다.

1D deformation induced permeability and microstructural anisotropy of Ariake clays

  • Chai, Jinchun;Jia, Rui;Nie, Jixiang;Aiga, Kosuke;Negami, Takehito;Hino, Takenori
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.81-95
    • /
    • 2015
  • The permeability behavior of Ariake clays has been investigated by constant rate of strain (CRS) consolidation tests with vertical or radial drainage. Three types of Ariake clays, namely undisturbed Ariake clay samples from the Saga plain, Japan (aged Ariake clay), clay deposit in shallow seabed of the Ariake Sea (young Ariake clay) and reconstituted Ariake clay samples using the soil sampled from the Saga plain, were tested. The test results indicate that the deduced permeability in the horizontal direction ($k_h$) is generally larger than that in the vertical direction ($k_v$). Under odometer condition, the permeability ratio ($k_h/k_v$) increases with the vertical strain. It is also found that the development of the permeability anisotropy is influenced by the inter-particle bonds and clay content of the sample. The aged Ariake clay has stronger initial inter-particle bonds than the young and reconstituted Ariake clays, resulting in slower increase of $k_h/k_v$ with the vertical strain. The young Ariake clay has higher clay content than the reconstituted Ariake clay, resulting in higher values of $k_h/k_v$. The microstructure of the samples before and after the consolidation test has been examined qualitatively by scanning electron microscopy (SEM) image and semi-quantitatively by mercury intrusion porosimetry (MIP) tests. The SEM images indicate that there are more cut edges of platy clay particles on a vertical plane (with respect to the deposition direction) and there are more faces of platy clay particles on a horizontal plane. This tendency increases with the increase of one-dimensional (1D) deformation. MIP test results show that using a sample with a larger vertical surface area has a larger cumulative intruded pore volume, i.e., mercury can be intruded into the sample more easily from the horizontal direction (vertical plane) under the same pressure. Therefore, the permeability anisotropy of Ariake clays is the result of the anisotropic microstructure of the clay samples.

그래핀에 기초한 막의 구조와 물질 전달 성질 개관 (Architecture and Transport Properties of Membranes out of Graphene)

  • 야콥 부크하임;로만 비스;김창민;등명명;박형규
    • 멤브레인
    • /
    • 제26권4호
    • /
    • pp.239-252
    • /
    • 2016
  • 최근 2차원 나노 물질을 응용하여 수처리 막의 성능을 향상시킬 수 있는가에 대한 연구가 활발하다. 그 노력의 한 가운데에 원자 두께를 가지고 있으면서 손쉽게 구할 수 있고 층으로 쌓을 수도 있는 2차원 물질인 그래핀이 자리하고 있다. 이 총설에서 우리는 그래핀으로부터 만들 수 있는 두 가지 막 구조에 관한 기초 물질 전달 현상을 최근 연구 성과를 중심으로 다룬다. 그 물질 자체로 이미 물질 전달 차단성을 갖는 그래핀에 정확히 제어된 크기의 구멍을 뚫을 수 있다면 아마도 원자 크기 수준으로 얇은 두께 때문에 그래핀 막은 같은 기공 크기의 어느 막보다도 빠른 궁극적 투과도를 나타낼 것이며, 이로부터 선택도를 담보할 수 있다면 다양한 막 분리 공정에 적용할 수 있을 것이다. 그 한 예로, 나노미터 이하의 기공을 가정한 초박막 침투성 그래핀 막에 대한 분자동역학 연구와 몇몇 초기 실험 결과들이 해수담수화 막으로서의 가능성을 보인 점은 주목할 만하다. 그래핀 물질로부터 다른 구성을 가진 막을 설계할 수 있는데, 이 막은 적당히 산화된 그래핀 마이크로 판들을 무작위로 적층함으로써 구현할 수 있다. 그래핀 판 적층 간격을 나노미터 이하로 쉽게 제어할 수 있기 때문에 이 구조 역시 수처리 및 해수담수화 막으로서의 가능성을 시사한다. 기존 막기술에 존재하지 않던 구조와 물질 전달 성질을 가짐으로써 두 종류의 그래핀 막은 앞으로 수처리 기술을 비롯한 다양한 막 기술의 응용분야에서 효과적으로 기여할 가능성이 충분하다.

양생조건에 따른 알칼리활성슬래그 모르타르의 강도발현 특성 (Strength Development Properties of Alkali-Activated Slag Mortar by Curing Conditions)

  • 송진규;김병조;오명현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 춘계학술대회
    • /
    • pp.216-217
    • /
    • 2015
  • 알칼리 활성 슬래그 결합재의 초기 보양과 양생조건에 따른 강도발현 특성을 파악하고자 활성화제의 종류와 조합을 달리한 3가지 결합재를 초기 보양과 서로 다른 조건으로 양생시킨 후 강도를 측정하였다. 실험결과 3가지 결합재는 초기 보양 여부와 양생조건에 따라 다른 결과를 나타냈으며, 이는 모르타르의 경화속도와 공극수에 이온화된 활성화제의 음이온의 역할이 지배적인 것으로 판단된다.

  • PDF

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.

Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향 (Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams)

  • 김병구;탁병수;정승룡;정민재;허보영
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

20세기 초 철도부설에 따른 우리나라 도시 구조의 변화에 관한 연구 (Influence of Railway on Korean City Structure in the Early $20^{th}$ Century)

  • 김종헌
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.379-387
    • /
    • 2006
  • The objective of this study is to describe the influence of railway and railway station on the change of city structure in Korea in the early 20th century. In the 1900s, railway was constructed in Japanese concessions and in new pore cities such as Incheon, Busan, and Wonsan. In the 1920s, railroad construction became related with the cities, which could produce the corps. In the 1930s, railroad also became related to the colonial industrial cities. Traditional city structure was then completely changed because new city structure was focused on not Seoul but Japan or harbors towards Japan. So Korean cities, which were netted by railway, had become the subsystem of Japan in the early 20th century. Korean cities have developed on the basis of this system until 1945. For example, the twelve main cities were chosen through the relationship with Japanese life, and the provincial office governments moved near railroad stations. However nowadays, these cities have possibilities of being international cities, such as Incheon and Busan, because of the extroversion of these cities.

레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작 (Fabrication of 3D Bioceramic Scaffolds using Laser Sintering Deposition System and Design of Experiment)

  • 이창희;사민우;김종영
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, we developed a novel laser sintering deposition system (LSDS) based on solid free-form fabrication (SFF) technology as it has the potential to fabricate complex geometries with controllable architecture for bone tissue engineering applications. The 3D biphasic calcium phosphate (BCP) scaffolds were fabricated with a pore size of 800㎛, a line width and height of 1000㎛, and an overall size of 8.2×8.2×8.0 mm3 according to the design of experiment (DOE) results. Additionally, an optimized manufacturing process using response surface analysis was established to fabricate 3D BCP scaffolds. The fabricated 3D BCP scaffolds were sintered at 950℃, 1050℃, 1150℃, and 1250℃ according to sintering processes with a furnace. As the sintering temperature increased, the porosity increased. Through the compressive strength test, the 3D BCP scaffolds sintered at 1050℃ presented good results of about 0.76 MPa. These results suggest that fabrication methods for 3D bioceramic scaffolds using LSDS may meet the basic requirements for bone tissue engineering.

마이크로 광 조형 기술로 제작된 3차원 인공지지체의 구조적 형태에 따른 연골세포의 생착 특성 (Characteristics of chondrocytes adhesion depends on geometric of 3-dimensional scaffolds fabricated by micro-stereolithography)

  • 이승재;김병;임근배;김성원;이종원;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.173-174
    • /
    • 2006
  • Understanding chondrocyte behavior inside complex, three-dimensional environments with controlled patterning of geometrical factors would provide significant insights into the basic biology of tissue regenerations. One of the fundamental limitations in studying such behavior has been the inability to fabricate controlled 3D structures. To overcome this problem, we have developed a three-dimensional microfabrication system. This system allows fabrication of predesigned internal architectures and pore size by stacking up the photopolymerized materials. Photopolymer SL5180 was used as the material for 3D scaffolds. The results demonstrate that controllable and reproducible inner-architecture can be fabricated. Chondrocytes harvested from human nasal septum were cultured in two kinds of 3D scaffolds to observe cell adhesion behavior. Such 3D scaffolds might provide effective key factors to study cell behavior in complex environments and could eventually lead to optimum design of scaffolds in various tissue regenerations such as cartilage, bone, etc. in a near future.

  • PDF