• 제목/요약/키워드: pore

검색결과 5,569건 처리시간 0.026초

졸-겔법으로 제조한 $ZrO_2.SiO_2$다공질유리의 세공제어 (Control of Pore Characteristics of Porous Glass in the $ZrO_2.SiO_2$ System Prepared by the Sol-Gel Method)

  • 신대용;한상목
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.485-491
    • /
    • 1993
  • Porous glass in the ZrO2.SiO2 system containning up to 30mol% zirconia were prepared by the sol-gel method from metal alkoxides and their pore characteristics with reaction parameters were investigated. The gels were made by hydrolyzing and condensation of the mixed metla alkoxides and were converted into the porous glass by heating up to $700^{\circ}C$. As a results, the mean pore radius became larger with increasing contents of HCl, H2O and hydrolysis temperature, and an alcohol with a large molecular weight for making the porous glass. In the case of 20ZrO2.80SiO2 porous glass with heated at $700^{\circ}C$, HCl and H2O content was 0.3mol and 4mol, the specific surface area was 284$m^2$/g, average mean pore radius was about 19.4$\AA$, porosity was 22.55% and pore characteristics depended on heating temperature.

  • PDF

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

무가압분말충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : I. 알루미나 (The Fabrication and Characteristics of Porous Alumina Ceramics by Pressureless Powder Packing Forming Method : I . Alumina)

  • 박정현;황명익;김동희;최환욱;김용남
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.662-670
    • /
    • 1999
  • Porous alumina was fabricated from pressureless powder packing forming method using powders granulated by spray drying. It was investigated the pore size distribution of fabricated porous alumina. The results of microstructural observation showed that intraganular pore size and intragranular pore size. At 1700$^{\circ}C$ there were no intragranular pores but it showed homogeneous distribution of intergranular pore size. The bending strength and shrinkage increased as porosity decreased. In case of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF

콜로이드/계면변수가 Zirconia의 치밀화와 기공제거에 미치는 영향 (Effects of the Colloid/Interface Variables on Densification and Pore Elimination of Zirconia)

  • 장현명;한규호;이기강;정한남
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.169-178
    • /
    • 1990
  • The sintering characteristics of ZrO2 were analyzed in terms of pore microstructure and kinetics of pore elimination. The pore structue of the ZrO2 sample prepared from colloid suspension was characterized by three distinct types of pores ; intradomain, interdomain, and intergglomerate pores. Sintering data at 1600$^{\circ}C$ showed that pores larger than a certain critical size(∼3$\mu\textrm{m}$) were difficult to remove, and this was analyzed in terms of the interagglomerate pore formed from the suspension under the condition of low kinetic stability, that is, the stability ratio smaller than its critical value. A theoretical equation for densification rate was derived and was applied to the densification rate of the ZrO2 polycrystalline body containging both the matrix(the 1st-generation) pores and the interagglomerate (the 2nd-generation) pores under the condition of slow grain growth.

  • PDF

$MgO-CaMgSiO_4$ 계 액상소결중의 고립기공거동 (Behavior of Isolated Pores during Liquid Phase Sintering of $MgO-CaMgSiO_4$ System)

  • 송병무;김정주;김도연
    • 한국세라믹학회지
    • /
    • 제22권3호
    • /
    • pp.7-12
    • /
    • 1985
  • A theoretical model describing the behavior of isolated pores during liquid phase sintering was developed and the experimental results obtained by the $80MgO-CaMgSiO_4$ specimens were given. Most of isolated pores once formed in the interior of specimen were not eliminated because the pressure of trapped non-diffusable gas in the pore like $N_2$ increases very rapidly with pore volume contraction. As sint-ering time increase it was observed that the number of pores decreases whereas the average size of pore increases. This phenomenon was interpreted in terms of the MgO growth during sintering which results in the coalescence of isolated pores. The increase of pore size resulting from pore coalescence was attributed to the main cause of the overfiring phenomena ; the higher sintering temperature or a long time sintering leads to a decrease in density.

  • PDF

열수반응으로 합성된 수화규산소다의 팽창 특성 (Expansion Characteristics of the Hydrated Sodium Silicate which Synthesized by Hydrothermal Reaction)

  • 조호연;공양표;서동수
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.845-850
    • /
    • 2008
  • Hydrated sodium silicate was synthesized by hydrothermal reaction using anhydrous sodium silicate. The optimum additions of water was 25wt% to make hydrated sodium silicate with homogeneous and purposed water contents. Porous ceramics with homogeneous microstructure and spherical closed pore can be fabricated by elimination of the large pores(a few mm in size) which was formed during first heat treatment through the decomposition of water. Spherical closed pore was formed above $600^{\circ}C$ and the pore size was increased with increasing second heat treatment temperature due to growth of pores. The size of spherical closed pore was varied from 35 to $233\;{\mu}m$ and specific gravity was varied from 0.2 to 1.02 depending on the combinations of the first and second heat treatment temperature.

일반자유단조 프레스와 방사형 단조 프레스의 기공 압착에 관한 비교 연구 (Comparative Study on Pore Closing in Open Die Forging by Conventional Forging Press and Radial Forging Machine)

  • 김성현;이민철;장성민;엄재근;전만수
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.399-404
    • /
    • 2010
  • We propose an analysis model for simulating the detailed procedure of pore closing in open die forging of shafts. In the analysis model, an artificial symmetric plane is used, on which initial pores are located to be traced. The analysis model is employed to carry out three-dimensional simulation of pore closing in shaft free forging by both conventional free forging press and radial forging machine. With this result, two typical types of free forging equipment for manufacture of shafts are compared in detail. It has shown that the radial forging machine is much superior to the conventional open die forging press especially in pore closing under high hydrostatic pressure with sound strain.

고체 알칼리 연료전지용 음이온 교환 세공충진막의 제조 및 특성 (Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances)

  • 최영우;박구곤;임성대;이미순;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.150-153
    • /
    • 2009
  • Anion exchange polymer electrolyte pore-filling membranes consisting of the whole hydrocarbon materials were prepared by photo polymerization with various quaternary ammonium cationic monomers and characterized on the properties for applying to solid alkali fuel cell (SAFC). Hydrocarbon porous substrates such as polyethylene were used for the preparation of the pore-filling membranes. The hydroxyl ion conductivity of the polymer electrolyte membranes prepared in this research was dependent on the composition ratio of an electrolyte monomer and crosslinking agents used for polymerization. Furthermore, these pore-filling membranes have commonly excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lower fuel crossover through the membranes, and easier preparation process than those of traditional cast membranes.

  • PDF

수퍼커패시터용 산화코발트전극의 세공과 재료구조의 설계 (Design of Pore and Matter Architectures in Cobalt Oxide Electrode for Supercapacitor)

  • 김한주;신달우;김용철;김성호;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.425-427
    • /
    • 2000
  • We describe the preparation of a cobalt oxide in which the solid-pore architecture of the material is controllably varied. All $CoO_2$ gels derived from $CoCl_2$-based sol-gel synthesis, but exhibit markedly different final pore structures based on how the pore fluid is removed from forces that result from extraction are either low or nonexistent. These nanoscale mesoporous materials have higher $CoO_2$ crystallites. Controlling both the pore and solid architecture on the nanoscale offers a strategy for the design of new supercapacitor and charge-storage materials.

  • PDF

인산형 연료전지용 다공성 박막의 표면 다공도에 관한 연구 (Study on the surface porosity of porous thin layer electrode for phosphoric acid fuel cell)

  • 김조웅;김영우;이주성
    • 한국표면공학회지
    • /
    • 제24권3호
    • /
    • pp.162-168
    • /
    • 1991
  • Gas diffusion and electrolyte penetration in wetproofed gas diffusion electrodes were studied using layers of PTFE- bonded carbon. Minor variations in fabrication and testing procedures resulted in very large variations in catalyst layer wetting characteristics and permiability for reaction gas. By controlling the pore size of gas diffusion electrode carefully by varing the PTFE contents, baking temperature, baking time and ammonium bicarbonate as additive, the primary pore was decreased and the secondary pore was increased and so more reaction gas through the primary pore could be reacted at catalyst agglomertes in the secondary pore. And the cathode current density was increased to more than 400mA.$\textrm{cm}^2$ and Tafel slope value was decreased to lower than 110mA/decade.

  • PDF