• Title/Summary/Keyword: porcelain surface treatment

Search Result 75, Processing Time 0.023 seconds

EFFECT OF PORCELAIN SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN FORCELAIN AND COMPOSITE RESIN (도재 표면처리가 도재와 도재 수리용 복합레진간 전단결합강도에 미치는 영향)

  • Koh, Eun-Sook;Lee, Sun-Hyung;Chung, Heon-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.23-36
    • /
    • 1994
  • Most investigators recommended that porcelain surface should be roughened with abrasives and/or be etched with acid in repairing the fractured porcelain with composite resin. This study was designed to evaluate the effect of porcelain surface treatments on the bond strength between porcelain and composite resin by measuring the shear bond strength and observing the porcelain surface with SEM. 48 porcelain disc were fabricated with Vintage porcelain and embedded in epoxy resin with the test surface exposed. The specimens were divided four groups at random and the test surfaces of the four groups were prepared as follows : Group 1 : Porcelain surface was roughened with a fine diamond and treated with 32% phosphoric acid gel for 10 seconds. Group 2 : Porcelain surface was roughened with a fine diamond and etched with 8% hydrofluoric acid gel for 5 minutes. Group 3 : Porcelain surface was roughened with a coarse diamond and treated with 32% phosphoric acid gel for 10 seconds. Group 4 : Porcelain surface was roughened with a coarse diamond and etched with 8% hydrofluoric acid gel for 5 minutes. All specimens were washed for 30 seconds. A representative specimen of each group was selected and the porcelain surface was observed with SEM at 1000 magnification. Remaining specimens were silanated, bonded with composite resin, thermocycled, and shear-tested on specially designed zig connected to Instron machine. The results were as follows : 1. The shear bond strength of the group etched with hydrofluoric acid was significantly higher than that of group treated with phosphoric acid(p<0.01). 2. The shear bond strength of the group roughened with a fine diamond was not significantly different from that of the group roughened with a coarse diamond(p>0.01). 3. SEM examination of prepared porcelain surfaces revealed that the surface etched with hydrofluoric acid showed numerous microporosities, undercut, and rougher surface than the surface treated with phosphoric acid. 4. All specimens etched with hydrofluoric acid showed cohesive failure within porcelain, but specimens treated with phosphoric acid mainly showed adhesive failure between porcelain and composite resin.

  • PDF

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

Effect of In on Surface Behaviors of Porcelain-Metal Boundary in Low Gold Porcelain Alloys (도재소부용 저금함유금합금에서 도재계면의 표면거동에 미치는 미량원소 In의 영향)

  • Nam, S.Y.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 1999
  • This study was carried out by observing to composition of oxide on the surface of dental porcelain low gold alloy with various Indium additions according to the degassing and analysing the change composition of additional elements In on diffusion behaviors of Porcelain-matal surface. The specimens used were Au-Pd-Ag alloys by small indium addition. These specimens were treated for 10min at $1000^{\circ}C$ in vacuum condition. To investigate the microsturcture of oxidized alloy surface, SEM and EDAX were used, and EPMA were used to investigate the diffusion behaviors of porcelain-metal surface. X-ray diffraction were used to observe the morphological changes in the oxidation zone. The results of this study were obtained as follows ; 1) The hardness of alloy increased with increasing amount of In addition. 2) The formation of oxidation increased with increasing In content after heat treatment. 3) Diffusion of indium elements increased with increasing In content in metal-porcelain surface after firing. 4) The oxidations of alloy surface were mainly $In_2O_3$.

  • PDF

EFFECT OF SURFACE MODIFICATION ON BOND STRENGTH IN TITANIUM-PORCELAIN SYSTEM (티타늄의 표면처리 방법에 따른 저온소성도재와의 결합강도)

  • Roh, Sung-Wook;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.589-600
    • /
    • 2007
  • Statement of Problem: Titanium has many advantages of high biocompatibility, physical porperties, low-weight, low price and radiolucency, but it is incompatible with conventional dental porcelain due to titanium's oxidative nature. Many previous studies have shown that they used the method of sandblast surface treatment prior to porcelain application, the researchs are processing about the method of acid etching or surface coating. Purpose: The purpose of this research is to study the effect on bond strength between titanium and porcelain when using macro-surface treatment and micro-surface treatment and macro and micro surface treatment. Material and method: In this study, we evaluated the bond strength by using 3-point bending test based on ISO 9693 after classified 7 groups-group P : polished with #1200 grit SiC paper, group SS : sandblasted with $50{\mu}m$ aluminum oxides, group LS : sandblasted with $250{\mu}m$ alumium oxides, group HC : treated with 10% hydrochloric acid, group NF : treated with 17% solution of fluoric acid and nitric acid, group SHC : treated with 10% hydrochloric aicd after sandblsting with $50{\mu}m$ alumium oxides, group SNF treated with 17% solution of fluoric acid and nitric acid. Results : Within the confines of our research, the following results can be deduced. 1. Group SS which was sandblasted with $50{\mu}m$ aluminum oxides showed the highest bond strength of 61.74 MPa and significant differences(P<0.05). The bond strengths with porcelain in groups treated acid etching after sandblasting decreased more preferable than the group treated with sandblasting only. It gives significant differences(P<0.05). 2. After surface treatments, the group treated with sandblasting showed irregular aspect formed many undercuts, in the SEM photographs. The group treated with hydrochloric acid had the sharp serrated surfaces, the group treated with the solution of fluoric acid and nitric acid had the smooth surfaces, the group with sandblasting and hydrochloric acid had irrigular and porous structure, the group with sandblasting and the solution of fluoric acid and nitric acid had crater-like surfaces. But all of the groups treated with acid etching was not found and undercut. Conclusion: In above results, average surface roughness increase, bond strength also increase, but surface topographs influences more greatly on bond strengths.

The Surface Property Change of the Heat Treated Dental Porcelain Alloy (열처리에 따른 치과도재용 합금의 표면특성에 관한 연구)

  • Nam, Sang-Yang;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • The purpose of this study was carried out by oberserving to composition of an oxide on the surface of Dental porcelain alloy according to the conditions of its heat treatment and analysing the change composition on its surface. Morphological change of the heat treated dental porcelain alloy have been investigated with SEM and EDX. The result of this study is summarized ad follows. The surface indium concentration of specimens increased as the heat treatment temperature and the oxygen partial pressure increased.

  • PDF

BONDING STRENGTH OF THE PORCELAIN LAMINATE TO Ni-Cr ALLOY (니켈-크롬 합금과 Porcelain laminate의 결합력에 관한 연구)

  • Lee Seung-Lo;Jin Tai-Ho;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.85-91
    • /
    • 1992
  • The purpose of this study was to evaluate the bonding strength between porcelain laminate and Ni-Cr alloy in the various surface treatments of the bonding faces. For this study the metal surface of specimens were treated : 1) etching only, 2) sandblasting only, and 3) sandblasting and etching. The porcelain laminate were made and bonded to the metal specimens with light curing composite resin cement. Instron testing machine was used to measure their bonding strength : and the result was obtained as follows : 1. The bonding strength of the double treatment of the sandblasting and etching group was higher than that of the single treatment of sandblasting or the etching group. 2. The bonding strength of the sand blasting group was higher than that of the etching group. 3. The debonding were mainly occurred between the Ni-Cr alloy and the composite resin cement.

  • PDF

Shear bond strength and debonding failure mode of ceramic brackets according to the surface treatment of porcelain (도재 표면 처리가 따른 세라믹 브라켓의 전단 접착 강도 및 탈락 양상)

  • Lee, Jeong-Nam;Lee, Cheol-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.803-812
    • /
    • 1998
  • The purpose of this study was to evaluate the shear bond strength and failure mode of ceramic brackets according to the surface treatment of porcelain. Sixty Porcelain samples were randomly divided into six groups of ten samples. Then they were treated as follows: Group 1(silane only), Group 2(etching+silane), Group 3(stone+silane), Group 4(sandblasting+silane), Group 5(stone +etching+silane), Group 6(sandblasting+etching+silane) After surface treatment of porcelain, sixty Transcend 6000 brackets were bonded to the prepared porcelain surface and they were stored in $37^{\circ}C$ saline for 24 hours. An Instron universal testing machine was used to test the shear bond strength of ceramic brackets to porcelain. After debonding, bases of ceramic brackets and porcelain surfaces were examined under scanning electron microscope(SEM) to determine failure mode. Statistical analysis of the data was carried out with one-way ANOVA and Duncan's multiple range test. The results were as follows : 1. The shear bond strength of surface-treated groups 2 to 6 was higher than that of only silane-treated group 1, and there was statistical significance. (P<0.05) 2. There was no significant difference among the groups 3 to 6. (P>0.05) 3. The shear bond strength of etching-surface treated group 2 was significantly lower than those of sandblasting-surface treated group 4, complex surface treated group 5 and group 6. 4. According to the scanning electromicroscopic images, the surface roughness of sandblasting-surface treated group 4 was less than those of the group 5 and 6, but there was no significant difference in the shear bond strength. (P>0.05) As a conclusion we can have a clinically adequate bond strength when an application of silane is done after the treatment of porcelain surface with more than one way to bond ceramic bracket on the porcelain. Also, it is considered that the sandblasting and application of silane is effective for the simplication and convenience of the treatment.

  • PDF

Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics

  • Mosharraf, Ramin;Rismanchian, Mansour;Savabi, Omid;Ashtiani, Alireza Hashemi
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.221-228
    • /
    • 2011
  • PURPOSE. Veneering porcelain might be delaminated from underlying zirconia-based ceramics. The aim of this study was the evaluation of the effect of different surface treatments and type of zirconia (white or colored) on shear bond strength (SBS) of zirconia core and its veneering porcelain. MATERIALS AND METHODS. Eighty zirconia disks (40 white and 40 colored; 10 mm in diameter and 4 mm thick) were treated with three different mechanical surface conditioning methods (Sandblasting with $110{\mu}m$ $Al_2O_3$ particle, grinding, sandblasting and liner application). One group had received no treatment. These disks were veneered with 3 mm thick and 5 mm diameter Cercon Ceram Kiss porcelain and SBS test was conducted (cross-head speed = 1 mm/min). Two and one way ANOVA, Tukey's HSD Past hoc, and T- test were selected to analyzed the data (${\alpha}=0.05$). RESULTS. In this study, the factor of different types of zirconia ceramics (P=.462) had no significant effect on SBS, but the factors of different surface modification techniques (P=.005) and interaction effect (P=.018) had a significant effect on SBS. Within colored zirconia group, there were no significant differences in mean SBS among the four surface treatment subgroups (P=0.183). Within white zirconia group, "Ground group" exhibited a significantly lower SBS value than "as milled" or control (P=0.001) and liner (P=.05) groups. CONCLUSION. Type of zirconia did not have any effect on bond strength between zirconia core and veneer ceramic. Surface treatment had different effects on the SBS of the different zirconia types and grinding dramatically decreased the SBS of white zirconia- porcelain.

A qualitative analysis of bonding between electroformed surface and veneering ceramics

  • Kwon, Ho-Beom;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.328-335
    • /
    • 2000
  • Statement of the problem. Recently an innovative method of fabricating indirect restorations by gold electroforming has been developed. But the bond quality and strength of the gold coping to the porcelain is uncertain. Purpose of study. The purpose of this study is to analyze and evaluate the electroformed gold surface for mechanical bonding between the gold and the ceramic veneering. Methods/material. Electroformed disks were made using electroforming technique. And the surface of the electroformed coping was analyzed after sandblasting, heat-treatment, bonding agent application, opaque porcelain firing with scanning electron microscopy and energy dispersive x-ray analysis. Results. In the analysis with SEM, Sandblasting made the sharp edges and undercuts on the electroformed surface, and after bonding agent application, net-like structure were created on the electroformed surface. In the energy dispersive x-ray analysis it is confirmed that electroformed surface contains some impurities. Conclusion. With the use of sandblasting and bonding agent, electroformed surface seems to be enough to bond with veneering porcelain.

  • PDF

Optimization of Surface Treatment for Bonding S trength between Zirconia and Veneering Porcelain

  • Won, H.Y.;Kim, H.S.L.;Yun, C.H.;Son, M.K.;Cho, H.C.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.332-332
    • /
    • 2012
  • All-ceramic prostheses are widely used to fulfill the high esthetic demand. However, bonding failure between zirconia and porcelain is one of the all-ceramic prostheses failures. In order to improve clinical sucess of all-ceramic prostheses, laboratory or in-office surface conditioning techniques on zirconia have been studied.

  • PDF