• Title/Summary/Keyword: poorly soluble

Search Result 119, Processing Time 0.036 seconds

A Study on Preparation of Water in Oil in Water (W1/O/W2) Emulsion Containing Titrated Extract of Centella asiatica (센텔라 아시아티카 정량추출물을 함유한 Water in Oil in Water (W1/O/W2) 에멀젼 제조에 관한 연구)

  • Seo, Dong Hoan;Lee, Hong Seon;Yoon, Jong Hyuk;Kim, Youn Joon;Byun, Sang Yo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.303-313
    • /
    • 2015
  • Titrated extract of Centella asiatica (TECA), which is poorly soluble in water is well known for wound healing and anti wrinkle agent. This study was conducted to find the optimum condition for the preparation of water in oil in water ($W_1/O/W_2$) emulsion containing TECA. Solubility of TECA were measured by UV spectrophotometer. 2.55 g of TECA was dissolved in solution composed of dipropylene glycol (40.0 g), ethanol (20.0 g), and water (10.0 g). Factors affecting stability of the emulsions ($W_1/O$, $W_1/O/W_2$) was investigated. The optimum conditions for the preparation of $W_1/O$ emulsion was composed of dipropylene glycol : ethanol : water : TECA in a weight ratio of 40.0 : 20.0 : 10.0 : 2.5 for water phase and squalane : cetyl PEG/PPG-10/1 dimethicone : cetearyl alcohol in a weight ratio of 22.5 : 4.0 : 2.5 for oil phase. The optimum conditions for the preparation of $W_1/O/W_2$ multiple emulsion was composed of water : $W_1/O$ emulsion : polysorbate 80 : carbomer : triethanolamine in a weight ratio of 55.8 : 40.0 : 4.0 : 0.1 : 0.1.

Analysis on Material Characteristics of Restored Areas with Mortar and Basis of Surface Deterioration on the Stupa of State Preceptor Jigwang from Beopchensaji Temple Site in Wonju, Korea (원주 법천사지 지광국사탑 복원부 모르타르 재료학적 특징 및 표면손상 기초 해석)

  • Chae, Seung A;Cho, Ha Jin;Lee, Tae Jong
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.411-425
    • /
    • 2021
  • The Stupa of State Preceptor Jigwang from Beopcheonsa Temple Site in Wonju (National Treasure) is a representative stupa of the Goryeo Dynasty, with outstanding Buddhist carvings and splendid patterns, clearly indicating its honoree and year of construction. However, it was destroyed by bombing during the Korean War (1950-1953) and repaired and restored with cement and reinforcing bars in 1957. The surface condition of the original stone shows long-term deterioration due to the m ortar used in past restorations. In order to identify the exact causes of deterioration, the m ortar and surface contaminants on the original stone were analyzed. Portlandite, calcite, ettringite, and gypsum from the mortar were identified, and its ongoing deterioration was observed through pH measurements and the neutralization reaction test. Analysis of surface contaminants identified calcite and gypsum, both poorly water-soluble substances, and their growth in volume among rock-forming minerals was observed by microscopy. Based on those results, semi-quantitative analysis of Ca and S contents significantly influencing the formation of salt crystals was conducted using P-XRF to analyze the basis of surface deterioration, and cross-validation was performed by comparing the body stone affected by the mortar and the upper stylobate stone unaffected by the mortar. Results indicate that the elements are directly involved in the surface deterioration of the body stone.

Comparison of the Migration and Absorption of Calcium and Magnesium in Apple Leaves Sprayed with Plant Nutrients Prepared by Wet Nano-grinding Technology (습식 나노화 공정기술 적용 식물 영양제를 살포한 사과의 칼슘과 마그네슘 이동 및 흡수율 비교)

  • Park, Jae-Ryoung;Kim, Eun-Gyeong;Lee, Seung Hyun;Chung, Il Kyung;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.769-773
    • /
    • 2019
  • In this study, the migration route and the absorption rate of calcium and magnesium in apple leaves were compared and analyzed using plant nutrients prepared by wet nano-grinding technology. The plant nutrients were sprayed onto the leaves to confirm the component content and the movement route of the nanoized calcium and magnesium. At 2, 4, and 8 weeks after the plant nutrient treatment, the apple leaves were divided into petiole, lamina, and side, and SEM and EDS were used to measure the calcium and magnesium contents. The calcium and magnesium contents of the petiole increased from the 4th week after plant nutrient application to 1,115% at the 8th week. The calcium and magnesium contents of the lamina decreased after spraying but increased after 4 weeks. The calcium and magnesium contents increased in the side of the leaves compared to the control, reaching 673% after 4 weeks. The calcium and magnesium contents increased with increasing duration in all plots when compared with the control unsprayed leaves, suggesting that the usually poorly soluble calcium and magnesium were transferred from the petioles to the lamina. The results of this study indicate that improved calcium and magnesium absorption could be obtained in crops other than apples using plant nutrients produced through wet nano-processing technology. This technology is also expected to be applicable to natural products and bioindustries.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

Synthesis of 1,2-Dodecylaminopropanediol and Its Mixing Effect with 1,2-Alkanediols as Preservatives (보존제로서 1,2-도데실아미노프로판디올의 합성 및 1,2-알칸디올 화합물의 혼합 효과)

  • Cha, Kyung-On;Kwak, Sang-Woon;Jeong, Kook-In;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.179-187
    • /
    • 2022
  • In this study, the synthesis of 1,2-dodecylaminopropanediol (1,2-DDAP) having a 12 carbon chain length and an amine group was designed to improve the preservation and hydrophilicity of 1,2-alkanediol-based compounds. 1,2-DDAP was prepared by reacting dodecylamine (DDA) with 3-monochloro-1,2-propanediol (3-MCPD) in an ethanol solvent at 40 ℃, and its yield and purity were about 56% and 98%, respectively, under a reaction condition of 2 h and a DDA:3-MCPD molar ratio of 1:0.8. The antimicrobial effect of 1,2-DDAP showed the values of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against microorganisms at concentrations of 10 to 100 times lower than those of 1,2-octanediol(1,2-ODIOL) or 1,2-decanediol (1,2-DDIOL). Based on the hydrophilic properties of 1,2-DDAP, mixed preservatives were prepared by adding small amounts of 1,2-ODIOL or 1,2-DDIOL, which are poorly soluble in water, with 1,2-DDAP. Mixed preservatives exhibited an effect of inhibiting microorganisms equal to or greater than that of 1,2-DDAP alone in antimicrobial activity tests. As a result of confirming the preservation effect in lotion (cosmetic formulation) for application, 1,2-DDAP showed similar antimicrobial activity at concentrations of 0.3 to 0.6 times lower than that of 1,2-ODIOL or 1,2-DDIOL. Therefore, it is considered that the use of 1,2-DDAP alone and the mixed use with small amounts of 1,2-ODIOL or 1,2-DDIOL can be a good alternative to preservatives in the product.

Stabilization of Quercetin using Organo-hectorite and Its Application in Sunscreen Cosmetics (오가노 헥토라이트를 이용한 쿼세틴 안정화 및 자외선 차단 제품 응용에 관한 연구)

  • Sang Uk Kim;Ji Yeon Hong;Yong Woo Kim;In Ki Hong;Song Hua Xuan;Mid Eum Yun;Sung Ho Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, a quercetin benton gel (QUERPLEX) that stabilized quercetin was prepared using organo hectorite, and its efficacy was confirmed. In addition, a comparative study was conducted on the stability and effectiveness of applying this to sunscreen cosmetics. It was confirmed that QUERPLEX remained stable without showing crystal precipitation and growth for 4 weeks. As a result of measuring antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), it showed antioxidant activity depending on the concentration, and showed a radical elimination ability of 70% or more at a concentration of 2,500 ppm or more, confirming a significant effect. Anti-inflammatory activity experiments using RAW 264.7 cells confirmed that NO production decreased in a concentration-dependent manner by reducing NO production by 8% at 25 ㎍/mL, 23% at 50 ㎍/mL, and 84% at 100 ㎍/mL. As a result of confirming the stability of the formulation according to the method of quercetin in the sunscreen formulation, the stability of the formulation was improved when quercetin was added directly to the formulation. It also improved the UV protection index on in vitro and in vivo, which is expected to have the potential as a component that can have a new boosting effect on UV protection. These results suggest that organo hectorite is very effective as a quercetin carrier and that it can be applied in cosmetic formulations by not only expressing the efficacy of quercetin but also bringing about additional effects.

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

Comparison of Toxic Response of Cladocerans to Organic Solvents to Establish the Standard Test Guidelines Using Korean Native Species (한국산 물벼룩 표준생태독성시험법 확립을 위한 10종 용매대조물질에 대한 독성반응 비교)

  • Kim, Byung-Seok;Park, Yoen-Ki;Yang, Yu-Jung;Hong, Soon-Sung;Park, Kyung-Hun;Jeong, Mi-Hye;Kim, Se-Ri;Park, Kyeong-Hun;Yeh, Wan-Hae;Kim, Doo-Ho;Yun, Jong-Chul;Hong, Moo-Ki;Kyung, Kee-Sung;Ahn, Young-Joon
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.10-15
    • /
    • 2010
  • Most pesticides are poorly soluble in water and must be dissolved in a solvent carrier before being added to the test medium on aquatic toxicity test. The concentration of solvent is critical to the success of a test. This study were conducted to recommend possible organic solvents which have good solubility for pesticides and low toxicity to Korean native water flea to establish new standard toxicity test methods using Korean native water flea for ecological risk assessment of pesticide. Four Korean freshwater cladocerans, Daphnia obtusa, Daphnia sp., Moina macrocopa and Simocephalus vetulus were exposed to 10 different organic solvents during 48 hours to evaluate their toxic response to solvents. Ethyl acetate was the most toxic to cladocerans tested. Although ethyl ether was the least toxic to cladocerans tested, it may not adequate as possible solvent in aquatic toxicity test due to high volatility and low water solubility. In conclusion, acetone, methanol, ethanol and acetonitrile which has low toxicity as well as good water solubility are recommended as optimal organic solvent to use in aquatic toxicity tests with Korean native cladocerans tested.

Influence of Vetiver Grass (Vetiveria zizanioides) on Rhizosphere Chemistry in Long-term Contaminated Soils (중금속으로 오염된 토양에서 근권부의 화학적 특성에 미치는 vetiver grass (Vetiveria zizianioides)의 영향)

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.55-64
    • /
    • 2008
  • A detailed understanding and appreciation of the important mechanisms operating at the soil:root interface, commonly identified as the rhizosphere, is critical for evaluating the potential for particular plant species to be successfully used as part of a phytoremediation technique. For specific plants, mechanisms may exist to overcome the inherit limitation of the phytoremediation technique when poorly mobile soil metals are of interest. In the present study, the influence of root exudates on the rhizosphere chemistry of soil and consequential metal uptake were investigated following culture of vetiver grass (Vetiveria zizanioides), recognized as a promising plant for land stabilization, in three different long-term contaminated soils and one non-contaminated control soil. The soil solution pH increased (0.3-1.1 units) following vetiver grass culture and dissolved organic carbon (DOC) also significantly increased in all soils with the highest increase in PP02 (23 to $173mg\;L^{-1}$). Chemical changes are contributed to root exudation by vetiver grass when exposed to high concentration of heavy metals. Chemical changes, consequently, influenced metal (Cd, Cu, Pb, and Zn) solubility and speciation in the rhizosphere. The highest solubility was observed for soil Ko01 (eg. 2091 and $318{\mu}g\;L^{-1}$ for Cd and Pb, respectively). Initial heavy metal solubility in soils varied with soil and either increased or decreased following vetiver grass culture depending on the soil type. An increase in pH following plant culture generally resulted in a decrease in metal solubility, while elevated DOC due to root exudation resulted in an increase in metal solubility via the formation of metal-DOC complexes. Donnan speciation demonstrated a significant decrease in free Cd and Zn in the rhizosphere and the concentration of Cd, Pb, and Zn in vetiver grass shoot was highly correlated with soluble concentration rather than total soil metal concentration.