• 제목/요약/키워드: pool fire

검색결과 157건 처리시간 0.023초

2유체노즐의 액체풀 화재 소화 성능에 대한 검토 (Examination on Liquid Pool Fire Extinguishment Performance of Twin-fluid Nozzle)

  • 정찬석;이치영
    • 한국화재소방학회논문지
    • /
    • 제31권4호
    • /
    • pp.59-64
    • /
    • 2017
  • 본 연구에서는 2유체노즐의 액체풀 (Liquid pool) 화재 소화 성능에 대하여 선행적인 검토를 수행하였다. 액체풀 화재의 경우, 에탄올 (Ethanol) 1200 ml를 이용하였으며, 물 공급 유량은 632 ml/min, 공기의 공급 유량은 40 l/min과 70 l/min으로 설정하였다. 본 실험조건에서 2유체노즐을 이용하여 화재 소화 실험을 수행하였고, 2유체노즐의 분사 특성 (액적 크기 및 유량 분포)을 측정하였다. 실험 결과, 공기의 유량이 많은 조건에서 빠른 시간 안에 성공적으로 화재를 소화할 수 있었고, 이러한 결과에 대하여 가시화 및 2유체노즐 분사 특성 데이터를 토대로 분석하였다. 또한, 기존 연구의 일부 결과와 비교를 통하여, 2유체노즐이 단일유체노즐에 비해 더욱 작은 물의 유량 조건에서도 화재 소화를 할 수 있을 가능성이 있음을 확인하였다.

Pool 화재에서의 표면 냉각에 의한 소화 (Extingushiment by the Colling Effect of the Fuel Surface with Pool Fires)

  • 한용식;김명배;신현동
    • 한국화재소방학회논문지
    • /
    • 제11권4호
    • /
    • pp.15-23
    • /
    • 1997
  • A series of measurements and visualization to investigate the extingushiment of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperature, O2, CO2, and CO concentrations along the plume centerline are carried out to observe pool structures without water sprays. Visualization by the Ar-ion laser sheet flow pattern of droplets of the sprays above the pool fires. It is observed than in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a repid decrease do not continue till the extinction point.

  • PDF

Whirl Fire와 Pool fire의 화염 거동에 관한 연구 (A Study on the Flame Behavior of Whirl Eire and Pool Fire)

  • 오규형;강연옥;이성은
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

화재분석모델을 이용한 이중격실화재 검증분석 (Simulation of Pool Fire with Two Rooms Using FDS Model)

  • 김봉현;배용범;류수현;이공희;김윤일;문찬기;박종석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1332-1337
    • /
    • 2008
  • Fire model shall be verified and validated to reliably predict the consequences of fires within its limitations. This study aims to predict pool fire with two rooms using FDS and to coompare FDS simulation results with PRISME experimental data which can be applicable to the fire of nuclear power plant facility. Four different sizes of grid (0.08m, 0.1m, 0.125m, 0.2m) are used in the simulation and the simulated results of specific quantities such as temperature, chemical composition, heat flux and heat release rate are compared to the experimental data. From this study, the FDS simulation results with the finer grid resolution show better similarity and trend with pool fire experimental data. The sensitivity analysis and the selection of the proper size grid are essential to predict the consequences of pool fire with two rooms reliably.

  • PDF

석유류 POOL FIRE에 있어서의 열적인 영향(I) (Thermal Effects in the Pool Fire of Fuels(I))

  • 정국삼;강민호;이덕영
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.75-83
    • /
    • 1996
  • This paper was concerned with pool fire about many used kerosene and diesel oil. In order to know the thermal effects of kerosene and diesel oil, temperature change in the pool fire of these fuels were obtained as a variation of combustion time and the tank's height and diameter by using the data acquisition system, And fuel combustion velocity were derived as a function of the diameter and wall thickness of tanks and combustion time. As a result, when the tank's height was 15㎝, the greater diameter the higher temperature rising regardless of tank's wall thickness and fuels. But, when the tank's height is 30㎝, temperature rising was not higher than 15㎝. Also, temperature rising in the pool fire of kerosene much higher than diesel oil. Kerosene's combustion velocity was about two times faster than diesel oil. And, kerosene's combustion velocity was increased according to the increasing of tank's diameter and combustion time. But, diesel oil's combustion velocity was a little increased or not. Surrounding temperature change of tank with the pool fire was obtained temperature distribution of 0∼35℃ according to the change of tank's diameter and distance from the tank's wall.

  • PDF

EXPERIMENTS ON THE INTERACTION OF WATER SPRAYS WITH POOL FIRES

  • Han, Yong-Shik;Kim, Myung-Bae;Shin, Hyun-Dong
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.518-525
    • /
    • 1997
  • A series of measurements and visualization to investigate the interaction of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperatures, $O_2$, $CO_2$, and CO concentrations along the plume centerline are carried out to observe pool fire structures without water sprays. Visualization by the Ar-ion laser sheet shows flow pattern of droplets of the sprays above the pool fires. It is observed that in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a rapid decrease do not continue till the extinction point.

  • PDF

FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측 (Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.12-18
    • /
    • 2017
  • 본 연구는 FDS의 액체증발모델을 이용하여 메탄올 풀 화재의 질량연소플럭스를 예측하고 복사분율, 평균흡수계수와 같은 연료의 열적 물성값에 따른 영향을 평가하였다. 해석대상 풀의 직경은 5 cm에서 200 cm 사이이며 해석영역의 크기는 풀의 크기에 비례하여 구성하였다. 해석에 적용된 기준격자는 격자민감도 평가를 통해 결정되었으며 약 750,000개의 격자를 적용하였다. 메탄올 풀 화재에 대해 FDS 액체증발모델을 적용하여 계산된 질량연소플럭스는 해석대상 풀 직경에 따른 천이특성을 잘 나타냈으며 전체적으로 실험편차 내에서 기존 실험과 일치된 결과를 예측하였다. 질량연소플럭스는 복사분율 증가에 따라 증가하는 경향을 보였으며 풀의 직경이 작은 경우 평균흡수계수의 영향이 상대적으로 크게 나타났다.

Analyzing Safety Factors of Swimming Pool

  • KWON, Yeon Taek;SEO, Myung Seok;SEO, Won Jae
    • Journal of Sport and Applied Science
    • /
    • 제5권1호
    • /
    • pp.11-15
    • /
    • 2021
  • Purpose: Swimming industry is improving faster than the other types of sport industries and populations of participating swimming are promptly increasing. Lack of recognition of fire safety in swimming facilities is issues related-studies has only recently begun to pay attention. This study is to review and extract fire safety factors for managing swimming pool. Research design, data, and methodology: The study reviewed related-ordinances, governmental documents, and studies discussing safety management of sport facility. Given the literature review, the study produced an initial construct presenting items and factors including fire safety elements and experts' review were conducted to ensure conceptual validity. Finally, the study generated the final factors and subitems representing fire safety elements for swimming pool management. Results: The study confirms factors and elements as follows: the study identifies fire safety equipments as first factors presenting fire extinguisher' place, its proper run, check list and so forth, Second factor is warning system including fire warning equipment, its proper operation, sprinkler and its proper operation, switch and lamp of emergency panel and their proper run and so on. Third factor is evacuation system including a fire exit, exit sign, broadcasting equipment, and their proper operation, and so on. The other factors are an electronic equipment and its subelements, gas management including safety management of LPG, gas valve, pipe, and fire prevention facility including a fire door and its proper operating. Conclusions: Regarding safety management of swimming pool, further discussions and implications were made, and future directions for related-studies were discussed.

LNG 저장 탱크의 Pool Fire에 의한 복사열 피해 (Radiation Damage by the Pool Fire of LNG Storage Tank)

  • 손정환;한윤봉
    • 한국가스학회지
    • /
    • 제2권1호
    • /
    • pp.14-22
    • /
    • 1998
  • 본 연구에서는 LNG 저장탱크에서 액면화재(pool fire) 발생시 복사열속(radiation flux)의 정량적인 예측과 복사열 피해를 줄이는 방법을 제안하기 위하여 RISC모델을 사용하여 여러 조건에서 복사열속을 계산하였다. 모델 예측결과 LNG 탱크의 액면화재에 의한 복사열 피해에 가장 큰 영향을 미치는 인자는 풍속임을 알 수 있었다. 화염과 피해 대상물사이의 복사피해 정도는 높은 풍속에서 보다 낮은 풍속에서의 풍속변화에 따라 크게 변하였다. 또한 액면화재 발생시 복사열 피해는 탱크 또는 공장 주위에 방풍시설을 함으로써 크게 줄일 수 있음을 알 수 있었다. 방풍시설은 다른 방법들 보다 경제적이기 때문에 냉각시설 및 소방시설과 연계하여 가스 저장탱크 주위에 설치하는 것이 바람직하다.

  • PDF