• 제목/요약/키워드: polyvinylpyrrolidone

검색결과 194건 처리시간 0.032초

Secretory Production of hGM-CSF with a High Specific Biological Activity by Transgenic Plant Cell Suspension Culture

  • Kwon, Tae-Ho;Shin, Young-Mi;Kim, Young-Sook;Jang, Yong-Suk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.135-141
    • /
    • 2003
  • The human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene was introduced into tobacco plants. The cell suspension culture was established from leaf-derived calli of the transgenic tobacco plants in order to express and secrete a biologically active hGM -CSF. The recombinant hGM-CSF from the transgenic plant cell culture (prhGM-CSF) was identified as a yield of about 180 ${\mu}$g/L in the culture filtrate, as determined by ELISA. The addition of 0.5 g/L polyvinylpyrrolidone (PVP) to the plant cell culture medium both stabilized the secreted prhGM-CSF and increased the level of production approximately 1.5-fold to 270 ${\mu}$g/L. The biological activity of the prhGM-CSF was confirmed by measuring the proliferation of the hGM-CSF-dependent cell line, TF-1. Interestingly, the specific activity of the prhGM-CSF was estimated to be approximately 2.7 times higher than that of a commercially available preparation from E. coli.

Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

  • Hong, Hyun-Ki;Park, Chan-Kyo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1252-1256
    • /
    • 2010
  • A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.

A Comparison Method of Silver Nanoparticles Prepared by the Gamma Irradiation and in situ Reduction Methods

  • Lee, Chul-Jae;Karim, Mohammad Rezaul;Vasudevan, T.;Kim, Hee-Jin;Raushan, K.;Jung, Maeng-Joon;Kim, Dong-Yeub;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1993-1996
    • /
    • 2010
  • Silver nanoparticles has been prepared by the $\gamma$-irradiation and in situ reduction methods. Based on the Raman spectra, TEM images, X-ray Diffraction (XRD) patterns and UV-vis spectra, the in situ reduction method is more stable and the average size of the silver nanoparticles is also smaller than by the $\gamma$-irradiation reduction method. It is identified that the silver ions interacting with nonbonding electrons of oxygen atom in the carbonyl group of polyvinylpyrrolidone (PVP) by the in situ reduction method. It is also found advantages of the in situ reduction method including no additional reducing agents, without $\gamma$-irradiations treatment and the room temperature treatment suitability.

Metallized Electrospun Nanofiber webs with Bulckled Configuration for Highly Transparent and Stretchable Conductors

  • Jin, Yusung;Hwang, Sunju;Jeong, Soo-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.363.1-363.1
    • /
    • 2016
  • Transparent and stretchable conductors are expected to be an essential component in future stretchable optoelectronic devices. Until now, two main methods have been commonly employed to fabricate transparent and stretchable conductors by using metal nanomaterials: creating buckling configurations and creating network configurations. In this report, a novel strategy for obtaining transparent and stretchable conductors is presented, one that employs these two main approaches simultaneously. To the best of our knowledge, this proposed configuration of a buckled long nanofiber network in this study has not yet been reported. In order to provide the transparent conductors with dual mode stretchability originating from simultaneous buckled and network configurations, a buckled Au@polyvinylpyrrolidone (PVP) nanofiber network (hereafter referred to BANN for convenience) was fabricated by transferring Au-metallized electrospun PVP nanofibers onto a prestrained polydimethylsiloxane (PDMS) substrate. Our BANN shows considerably lower strain sensitivity of resistance than that of straight Au@PVP nanofiber network. Durability tests conducted by performing cyclic tensile strain reveal that the relative change in resistance of BANN (prestrain = 20%) is quite small after 1000 cycles. We also demonstrate that this BANN exhibits superior performance over widely used indium tin oxide conductors with regard to high optical transmittance and low sheet resistance.

  • PDF

Fabrication of CuZn Nanofibers by Electrospinning Method

  • 최아롬;박주연;정은강;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.374.1-374.1
    • /
    • 2016
  • Copper and zinc are well known elements with antibacterial effect. So in this research, Cu and Zn (CZ) nanofibers (NFs) were fabricated by electrospinning method using polyvinylpyrrolidone (PVP) for adjusting viscosity. The CZ/PVP precursor solutions were prepared with copper sulfate pentahydrate, and zinc acetate dihydrate. Distilled water was used for solvent and PVP was used to regulate the viscosity of precursor solution. The CZ/PVP NF composites were obtained by electrospinning method using the precursor solution. The average diameter of obtained CZ/PVP NFs was determined by optical microscopy using Motic image plus 2.0 program and was found to be 490 nm. The chemical environment of the obtained CZ/PVP NF composites was investigated with X-ray photoelectron spectroscopy (XPS). After heating the obtained CZ/PVP NF composites at 353 K, the solvent was removed. The characteristic C 1s, Cu 2p, and Zn 2p core level XPS peaks were observed. After calcination the CZ/PVP NF composites at 873 K in Ar environment for 5 hrs, PVP was decomposed at this temperature and CZ NF was obtained. This was confirmed by decreasing the intensity of C 1s.

  • PDF

코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작 (Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure)

  • 전태선;이성호;김용신
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

The xps study of the Cu-Zn nanofiber

  • Jeong, Eunkang;Kang, Yujin;Park, Juyun;Kang, Yong-Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.236.2-236.2
    • /
    • 2015
  • The copper-zinc(Cu-Zn) nanofiber was prepared by electrospinning method. The Cu/PVP (polyvinylpyrrolidone) and Zn/PVP precursor solutions were prepared by dissolution of copper sulfate and zinc acetate in methanol, respectively. The PVP was used to control the viscosity of the precursor solutions. The optimized ratio for the Cu/PVP and Zn/PVP nanofibers was determined separately. Then the suitable ratio of the precursor solutions was applied for fabrication of Cu/Zn/PVP nanofiber. For the electrospinning method, the precursor solutions were filled in a syringe. The distance between metallic needle on the syringe and collector was fixed at 16 cm and the voltage was applied on the tip was 13.0 kV. And the as-spun nanofiber was heated at 353K for removal of residual solvent. Then the heated nanofibers were calcined at 973K to decompose PVP. The obtained Cu, Zn, and Cu-Zn nanofibers were investigated with X-ray photoelectron spectroscopy (XPS) for the chemical properties, scanning electron microscopy (SEM) for the morphologies, and X-ray diffraction (XRD) to characterize the crystallinity and phase of nanofibers.

  • PDF

다중벽 탄소나노튜브와 금나노입자를 사용한 나노박막의 특성연구 (Characterization of Au-MWNT nanocomposite in thin films)

  • 김정수;배종성;고창현;오원태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.49-49
    • /
    • 2009
  • Nanocomposites of gold nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared by electrostatic interaction. Gold nanopartic1es were stabilized by polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and poly(sodium-4-styrenesulfonate) (PSS) in aqueous medium, and MWNTs were modified by poly(diallyldimethylammonium)chloride (PDDA) in water. The as-perpared Au-MWNT nanocomposites were structurally and electrically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV/Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclo voltammetry (CV). UV/Vis spectra of Au-MWNT nanocomposites showed the characteristic surface plasmon bands in the range of ~515nm, depending on the stabilizers. There is only slight change on the band shape with variation of stabilizing agents for gold nanoparticles. Through FE-SEM and TEM images, the distribution of gold, nanoparticles on the sidewalls of MWNTs was deliberately investigated on Au-MWNT nanocomposites treated with different stabilizers. XPS and CV showed redistribution of electron densities and changes in the binding energy states of nanopartic1es in nanocomposite respectively.

  • PDF

다공성 Cr2O3 나노육각기둥을 이용한 C2H5OH 센서 (C2H5OH Sensor Using Porous Cr2O3 Nano-Hexaprisms)

  • 정현묵;이종흔
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.451-455
    • /
    • 2012
  • Dense Cr-precursor nano-hexaprisms were prepared by heating the Cr-nitrate aqueous solution containing Hexamethylenetetramine and polyvinylpyrrolidone, which were converted into porous $Cr_2O_3$ nano-hexaprisms containing nanoparticles by heat treatment of Cr-precursors at $600^{\circ}C$ for 2 h in air atmosphere. At the sensor temperature of $300^{\circ}C$, porous $Cr_2O_3$ nano-hexaprism showed the high response ($R_g/R_a$, $R_g$: resistance in gas, $R_a$: resistance in air) to 100 ppm $C_2H_5OH$ ($R_g/R_a=69.8$) with negligible cross-responses to 100 ppm CO and 5 ppm $C_6H_6$. The sensitive and selective detection of $C_2H_5OH$ in porous $Cr_2O_3$ nano-hexaprism were discussed in relation to the morphology of nanostructures.

셀룰로오스 EAPap 용 은잉크 제조 및 잉크젯 프린팅 (Inkjet Printing of Customized Silver Ink for Cellulose Electro Active Paper)

  • 문성철;;;;김재환
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.737-742
    • /
    • 2014
  • This paper reports a customized silver ink and its inkjet printing process on a cellulose electro-active paper (EAPap). To synthesize a silver ink, silver nanoparticle is synthesized from silver nitrate, polyvinylpyrrolidone and ethylene glycol, followed by adding a viscosifier, hydroxyethyl-cellulose solution, and a surfactant, diethylene glycol. The silver ink is used in an inkjet printer (Fujifilm Dimatix DMP-2800 series) to print silver electrodes on cellulose EAPap. After printing, the electrodes are heat treated at $200^{\circ}C$. The sintered electrodes show that the thickness of the electrodes linearly increases as the number of printing layers increases. The electrical resistivity of the printed electrodes is $23.5{\mu}{\Omega}-cm$. This customized ink can be used in inkjet printer to print complex electrode patterns on cellulose EAPap to fabricate flexible smart actuators, flexible electronics and sensors.