• Title/Summary/Keyword: polyurethanes

Search Result 151, Processing Time 0.033 seconds

Polyurethane Semi-occlusive Dressing for Full Thickness Skin Graft Application (전층식피술에 적용한 폴리우레탄 반밀봉드레싱)

  • Lee, Hyuk Gu;Son, Dae Gu;Kim, Hyun Ji;Kim, Jun Hyung;Han, Ki Hwan
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.607-612
    • /
    • 2005
  • A traditional tie-over dressing may be applied to support the take of a skin graft. Although there are many advantage of this method, it has significant disadvantages, including time-consuming application. Furthermore, when the dressing is changed, the gauze becomes hard and can be stuck to the graft, causing damage and pain upon removal. The purpose of our study is to evaluate the effect of semi-occlusive dressing using polyurethane foam and film dressing($Allevyn^{(R)}$, $Opsite^{(R)}$) after full thickness skin graft. The authors treated 45 cases including burn scar contracture(n=38), syndactyly (n=1), absence of nipple-areolar complex(n=4), traumatic skin defect(n=1) and contact burn(n=1) with authors' method and 39 patients including burn scar contracture (n=39) with the tie-over dressing between 2000 and 2004. The patients in polyurethane foam and film dressing group ranged from 1 to 62 years of age (mean age, 15.1 years) and the patients in tie-over dressing group ranged from 2 to 60 years of age(mean age, 21.3 years). The postoperative results were analyzed according to the following measures: (1) the duration of graft-taking, (2) the admission period, (3) complications. Compared with the traditional tie-over dressing, polyurethane foam and film dressing was shown to be more successful in a reduced duration of graft-taking, in which was similar to the former in the rate of graft-taking, a reduced admission period and patient's discomfort. We concluded that semi-occlusive dressing using $Allevyn^{(R)}$ and $Opsite^{(R)}$ was an effective method after full thickness skin graft, which was easy to shape to difficult body locations, such as web spaces, fingers and maintains a moist environment for wound healing and does not stick to the wound.

Depolymerization of Waste Polyurethane from Automotive Seats (자동차 시트용 폐폴리우레탄의 해중합)

  • Min, Sung-Jin;Kong, Seung-Dae;Yoon, Cheol-Hun;Kang, An-Soo;Eom, Jae-Yeol;Shin, Pan-Woo;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • Resource recovery and recycling of materials and products, including polyurethanes is viewed as a necessity in today's society. Most urethane polymers are made from a polyol and a diisocyanate. these and be chemicals such as water, diamines or diols that react with isocyanate groups and add to the polymer backbone. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal whether by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and feedstock. In the chemical recycling method, there are hydrolysis, glycolysis, pyrolysis and aminolysis. This study, the work was carried out glycolysis using sonication ant catalyzed reaction. Different kinds of recycled polyols were produced by current method(glycolysis), catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols, the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication for the various glycols, increased as fallows: PPG

Dispersity of CNT and GNF on the Polyurethane Matrix: Effect of Polyurethane Chemical Structure (폴리우레탄 분자구조 변화에 따른 CNT와 GNF의 분산특성 연구)

  • Im, Hyun-Gu;Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • The aim of this study is to understand the effect of structure on the dispersion of both CNT and GNF in the phase of synthesized polyurethanes matrix. Various CNT/PU and GNF/PU composite films were prepared. Polyurethane having a different hard segment was blended with both CNT and GNF. PU having HDI as hard segment showed good dispersion with both CNT and GNF because of their linear structural character and molecular kinesis while PU having aromatic ring showed poor dispersion with those due to their structural complexity. Structural effect also induced the increase of its electro conductivity. The PU/CNT composite showed a bad dispersion (because of phase separation between PU matrix and CNT) but good electro conductivity at its surface (because CNT was collected on the surface of composite film due to low density of CNT). PU/CNT and PU/GNF composite films have quite low normalized sheet resistance value compared with silver/PU nanocomposite film because the fiber type filler could have much more contact points than that of sphere shaped silver particles have.

The Effect of Additives on the Mechanical Properties of Rigid Polyurethane (경질 폴리 우레탄의 기계적물성에 미치는 첨가제의 영향)

  • Na, Seok-En;Choi, Hwan-Oh;Lee, Jeon-Kyu;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.783-788
    • /
    • 2012
  • Stern tube bearing is a shaft device playing important roles to reduce the friction of axial rotation and to support the weight of shaft. However, because there is no domestic producer of stern tube bering, imported stern tube bearings have many practical problems including prices, delivery and after services. This is why stern tube bearing should be localization. For the purpose of development of polyurethane resin for stern tube bearings, the effect of additives on the hardness, tensile strength and elongation of the polyurethane resin were systematically investigated. For the preliminary researches, depending on the type of curing agent, MOCA type and non-MOCA type polyurethanes were synthesized. Preliminary researches concluded that MOCA type polyurethane resin has more excellent mechanical properties than non-MPCA type for stern tube bearings that Tensile strength and Hardness of non-MOCA type investigated 23 D, 4.3 Mpa. Therefore, MOCA type polyurethane was adapted as base resin of this research. Silica, calcium carbonate and graphite were selected as additives for the enhancement of mechanical properties of polyurethane resin. Effect of the type and the dosage of these additives on the hardness, tensile strength, elongation of the polyurethane resin were experimentally examined. However, addition of calcium carbonate and graphite showed only minor effect on the hardness of the resin. Polyurethane resin with silica showed relatively excellent hardness, tensile strength and improved elongation.

1,3-Propanediol Fermentation using the by-Products from Fat Industry (글리세롤을 함유한 유지산업 부산물의 1,3-propanediol 발효)

  • 김철호;김승환;김세정;박건규;이상기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • 1,3-Propanediol as a bifunctional organic compound could be used in polymerization reactions producing polyesters and polyurethanes. Byproduct containing high concentration of glycerol from fat industry was used to produce 1,3-propanediol in lower production cost as well as waste treatment. In this study, various attempts were made to increase 1,3-propanediol production under different conditions using Klebsiella pneumoniae ATCC 15380. The conversion yield and byproduct formation were influenced significantly by the fermentation pH and temperature. The optimal glycerol and nitrogen concentration for 1,3-propanediol production were found to be 25 a/L and 1%(w/v), respectively. The formation of 1,3-propanediol was optimal at pH 6.0 and temperature $35^{\circ}C$. 1,3-Propanediol production from byproduct from 2.5% glycerol was lower than that of 2.5% commercial glycerol and amounted only to 9.84 a/L from byproduct, while to 12.13 a/L from commercial glycerol.

Thermal Properties and Molecular Weight Variations due to Thermal History in Segmented Polyurethane Copolymer Blends (세그먼트된 폴리우레탄 블렌드의 열이력에 따른 열적 성질과 분자량 변화)

  • Cha, Yoon-Jong;Park, Dae-Woon;Kim, Hak-Lim;Lee, Han-Sup;Mah, Souk II;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • The variations of the glass transition, melting peaks, molecular weight and its distribution (polydispersity index: PI) due to the annealing temperature and time have been investigated using the thermoplastic segmented polyurethanes (TPUs) and its blends based on the contents of hard segment. The position of the melting peak and its magnitude have been increased with the annealing temperature and time. This may be arised from the rearrangement of the microdomain structure due to the long-range or short-range segmental motion, the order-disorder transition of non-crystalline microphase, the variation of the domain size or the degree of disorder of crystalline structure by given different thermal histories. The annealing temperature and time affected the molecular weights and polydispersity : the number and weight average molecular weights were increased, while the polydispersity index (PI) deceased at certain temperatures : for TPU-35 at $135^{\circ}C$, for TPU-44 at $170^{\circ}C$ and for TPU-53 at $180^{\circ}C$. The temperatures which give the variations in molecular weights and in PIs are consistent with the annealing temperatures of which $T_3$ solely exists for each sample. Thus it is suggested that the chain dissosiation and recombination simultaneously occur at the above mentioned temperature for each sample.

  • PDF

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

A Study on Properties of the Urethane Prepolymer Synthesis with Polyether-diol and Aromatic Diisocyanate System (폴리에테르-디올과 방향족 디이소시아네이트계의 우레탄 프리폴리머 합성에 따른 특성연구)

  • Lee, Hyun-Joo;Kim, Kwang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.491-496
    • /
    • 1998
  • The composition of isocyanates and polyols influence prepolymeric properties of adhesive and calking sealant based on polyurethanes (PU). One component moisture curing prepolymers, which reacted with surface humidity of substrate, were synthesized in several kinds of composition. Reactivity, structural change and properties of the prepolymers were studied as a preliminary step to manufacture PU based adhesive and sealant. To study the effects of mole ratio ([NCO]/[OH]), we used toluene diisocyanate (TDI), 4, 4'-diphenylmethane diisocyanate (MDI), and ether-polyols such as PTMG and PPG which have good resistance to hydrolysis and excellent low-temperature properties. The each prepolymers could be prepared in different molecular weight without any significant structural change. The mole ratio 1.78 of [NCO] to [OH] showed the fastest reactivity. It was confirmed that effect of polyols was larger than that of isocyanates on the prepolymer in reactivity. Several kinds of compounds were manufactured with each prepolymer, and tensile and properties were tested. And the optimum quantity of curing accelerator for the PU was 0.05~0.1%. In the tensile test, TDI based PU was superior to MDI based PU, and also PTMG based PU was superior PPG based PU.

  • PDF

Synthesis and Application of Sorbic Acid Grafted Hydrogenated Dicyclopentadiene Hydrocarbon Resin (소르빅산 변성 수소첨가 DCPD계 석유수지의 합성 및 응용)

  • Kong, Won Suk;Park, Jun Hyo;Yoon, Ho Gyu;Lee, Jae Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Hydrocarbon resins, which are defined as low molecular weight, amorphous, and thermoplastic polymers, are widely used as tackifier for various types of adhesives, as processing aids in rubber compounds, and as modifiers for plastics polymers such as isotactic polypropylene. Typically, hydrocarbon resins are non-polar, and thus highly compatible with non-polar rubbers and polymer. However, they are poorly compatible with polar system, such as acrylic copolymer, polyurethanes, and polyamides. Moreover, recently the raw materials of hydrocarbon resin from naphtha cracking had been decreased because of light feed cracking such as gas cracking. To overcome this problem, in this study, novel hydrocarbon resins were designed to have a highly polar chemical structure which material is sustainable. And, it was successfully synthesized by Diels-Alder reaction of dicyclopentadiene monomer and sorbic acid from blueberry as renewable resources. Acrylic resins were formulated with various tackifiers solution including sorbic acid grafted hydrogenated dicyclopentadiene hydrocarbon resins in acrylic adhesive and rolling ball tack, loop tack, $180^{\circ}$ peel adhesion strength, and shear adhesion strength were measured. The properties depend on the softening point and polar content of tackifiers.

Thermal Degradation of Thermoplastic Polyurethane Modified with Polycarbonate (열가소성 폴리우레탄으로 개질된 폴리카보네이트에서 TPU의 열분해)

  • 권회진;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.314-325
    • /
    • 2000
  • Thermal degradation of thermoplasitc polyurethane modified polycarbonate has been investigated by means of DSC, GPC and FT-IR techniques. The polyurethanes used in this study are TPU-35 and TPU-53 containing 35.5 and 53.4 wt% of hard segments, respectively. The more content of hard segment, the higher the glass transition temperature (T$_{g}$) of TPU was observed. On the other hand, the T$_{g}$ of the TPU modified PC decreased with the content of TPU and the annealing temperature regardless of the hard segment contents. The latter behavior nay arise from the thermal degradation of TPU upon annealing process: the observed thermal degradation temperatures were at 240 and 25$0^{\circ}C$ for the PC/TPU-35 and PC/TPU-53, respectively. The molecular weight, molecular weight distribution and viscosity agree well with the DSC measurement, which implicates a thermal degradation of TPU. In addition, thermal stability of the TPU modified PC linearly decreased with an incorporation of TPU. Transesterification or any interaction was not observed using FT-IR: the evidence was no frequency shift or any variance betwere the carbonyl stretching and NH group. For the specimens prepared below the degradation temperature, the enhancement of the thickness dependent impact strength of the PC/TPU blend was observed, and the morphology of the two blends was compared.d.

  • PDF