• Title/Summary/Keyword: polyurethane acrylate

Search Result 69, Processing Time 0.032 seconds

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Fabrication and Evaluation of the MXene-Based Wearable Sensor (MXene 기반의 웨어러블 센서 제작 및 평가)

  • Youngsam Yoon;Hojin Lee;Goeun Cha;Tae Wook Kim;Jongsung Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.295-299
    • /
    • 2023
  • Herein, we propose a simple fabrication method for MXene-coated V-groove sensors for applications. To enhance the sensitivity of this sensor, we applied MXene particles, instead of conventional metal layers, as a sensing material on the sensor's surface. This allows for an easier fabrication, as well as higher sensitivity of the sensor compared to those of our previously demonstrated metal-based V-groove sensor. Additionally, polyurethane-acrylate, a UV-curable liquid polymer, can be easily applied using micro-electromechanical systems-based surface-texture micromachining. The sensor sensitivity is approximately 0.08 /mm, and it can be improved by increasing the number of V-grooves. We believe that the proposed MXene-based wearable sensor offers a great potential in detecting various types of motions characteristic of human activities.

Synthesis and Curing Behavior of UV-curable Polycarbonate-based Polyurethane Methacrylate : Effect of Polyol Molecular Weight, Contents of Photoinitiator and Monomers on the Flexibility and Properties (자외선 경화형 폴리카보네이트계 폴리우레탄 메타아크릴레이트의 합성과 경화거동 : 폴리올 분자량, 광개시제 및 모노머 함량이 유연성과 물성에 미치는 영향)

  • Park, Eun-Suk;Hwang, Hyeon-Deuk;Park, Cho-Hee;Lee, Yong-Hee;Moon, Je-Ik;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2011
  • UV-curable coatings have been used in various industries due to their advantages such as high mechanical property, good solvent resistance, fast curing process and low volatile organic compounds. However, a lack of flexibility of UV-cured films is a weak point for the pre-coated system of roll-to-roll process. In this study, UV-curable polycarbonate-based methacrylates were synthesized with polycarbonate diol, isophorone diisocyanate and 2-hydroxyethylmethacrylate to improve flexibility of the UC-cured films. The effects of polyol molecular weight, content of photoinitiator and monomers on the UV-curing behavior, flexibility and properties were investigated. The UV-curing behavior was measured by a photo-DSC, the pendulum hardness, tensile strength, viscoelastic properties were also evaluated.

Parametric Study on Gloss Property of UV Curable Coated Steel (자외선 코팅 강판의 광택도에 미치는 공정 변수에 대한 연구)

  • Hwang, Dong Seop;Cho, Dong Chul;Yoo, Hye Jin;Kim, Jong Sang;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.116-122
    • /
    • 2014
  • This work deals with the effects of different oligomers, monomers, photoinitiators, and steel plates on the variation of gloss for UV coated steel plates at $20^{\circ}$ and $60^{\circ}$ (ASTM D523). The gloss value was more significantly varied with $20^{\circ}$ angle as compared with $60^{\circ}$. No substantial change in gloss was observed for the type of single oligomer; however, the gloss varied with the mixing ratios of oligomers, type and mixing ratio of monomers, type and concentration of photoinitiator, and type of steel plate. The maximum gloss value was observed when the mixing ratio of polyurethane acrylate (UA) to epoxy acrylate (EA) was 70 : 30, the mixing ratio of trimethylolpropantriacrylate (TMPTA) to tetrahydrofurfurylacrylate (THFA) was 5 : 5, the content of the mixed oligomer (UA : EA = 70 : 30) was 90 wt%, respectively. Darocur MBF of liquid type showed better gloss property than the solid type of Irgacure 184, and the gloss was decreased as the concentration of Darocur MBF increased from 1 to 4 wt%. Regarding the type of steel plate, GI steel plate showed better gloss property as compared with EG and primer-coated steel plates. The maximum gloss values of 95 GU and 120 GU, respectively, at $20^{\circ}$ and $60^{\circ}$ angles throughout the parametric study in the absence of leveling agents enhancing the gloss.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS

  • Singh R. Arvind;Yoon Eui-Sung;Kim Hong Joon;Kong Hosung;Jeong Hoon Eui;Suh Kahp Y.
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2005
  • Submicron-scale patterns made of polymethyl methacrylate (PMMA) were fabricated on silicon-wafer using a capillarity-directed soft lithographic technique. Polyurethane acrylate (PUA) stamps (Master molds) were used to fabricate the patterns. Patterns with three different aspect ratios were fabricated by varying the holding time. The patterns fabricated were the negative replica of the master mold. The patterns so obtained were investigated for their adhesion and friction properties at nano-scale using AFM. Friction tests were conducted in the range of 0-80 nN. Glass (Borosilicate) balls of diameter 1.25 mm mounted on cantilever (Contact Mode type NPS) were used as tips. Further, micro-friction tests were performed using a ball-on-flat type micro-tribe tester, under reciprocating motion, using a soda lime ball (1 mm diameter) under a normal load of 3,000 mN. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5\%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non-patterned sample (PMMA thin film) both at the nano and micro-scales, owing to their increased hydrophobicity and reduced real area of contact. In the case of patterns it was observed that their morphology (shape factor and size factor) was decisive in defining the real area of contact.

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

A Study on Migration of Monomers from Kitchen Utensils Including PA, PU, ABS, and Acrylic Resin Plastics (폴리아마이드제 등 조리기구 중 모노머의 이행에 관한 연구)

  • Choi, Jae-Chon;Park, Se-Jong;Park, Geon-Woo;Min, Hye-Kyoung;Yang, Ji-Young;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • The purpose of our paper was to investigate the migration level of 4,4'-MDA(4,4'-methylenedianiline), 2,4-TDA(2,4-toluenediamine), aniline, acrylonitrile and methylmeth acrylate from plastic cookwares into food simulants and to evaluate the safety of each monomers. The test articles for monomers were PA (polyamide) items for 4,4'-MDA, 2,4-TDA and aniline, PU (polyurethane) items for 4,4'-MDA, ABS (acrylonitrile-butadiene- styrene) items for acrylonitrile, and acrylic resin items for methylmethacrylate. All the article samples of 321 intended for contact with foods were purchased in domestic market. 4,4'-MDA, 2,4-TDA and aniline were analyzed by LC-MS/MS (liquid chromatography -tandem mass spectrometer), acrylonitrile by GC-NPD (gas chromatography-nitrogen phos phorus detector) and methyl methacrylate by GC-FID (gas chromatography-flame ionization detector). The migration level of monomers were within the migration limits of Ministry of Food and Drug Safety (MFDS). As a result of safety evaluation, our results showed that the estimated daily intake (EDI, mg/kg bw/day)s were $2.39{\times}10^{-9}$ and $1.20{\times}10^{-9}$ for 4,4'-MDA and 2,4-TDA of PA, $4.32{\times}10^{-9}$ for acrylonitrile of ABS and $2.27{\times}10^{-7}$ for methylmethacrylate of acrylic resin. Reference Dose (RfD, mg/kg bw/day) of acrylonitrile and tolerable daily intake (TDI, mg/kg bw/day) of methacrylate were established respectively as 0.001 by EPA (US Environmental Protection Agency) and as 1.2 by WHO (World Health Organization). When comparing with RfD and TDI, the EDIs of acrylonitrile and methylmethacrylate accounted for $4.32{\times}10^{-4}%$ and $1.89{\times}10^{-5}%$ respectively.

The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT (Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가)

  • An, Ye Chan;Kim, Jin Man;Kim, Chan Yang;Kim, Jong Sik;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.41-52
    • /
    • 2020
  • Purpose: To find out the dosimetric usefulness, setup reproducibility and efficiency of applying 3D Bolus by comparing two treatment plans in which Commercial Bolus and 3D Bolus produced by 3D Printing Technology were applied to the neck during VMAT treatment of Hypopahrynx Cancer to evaluate the clinical applicability. Materials and Methods: Based on the CT image of the RANDO phantom to which CB was applied, 3D Bolus were fabricated in the same form. 3D Bolus was printed with a polyurethane acrylate resin with a density of 1.2g/㎤ through the SLA technique using OMG SLA 660 Printer and MaterializeMagics software. Based on two CT images using CB and 3D Bolus, a treatment plan was established assuming VMAT treatment of Hypopharynx Cancer. CBCT images were obtained for each of the two established treatment plans 18 times, and the treatment efficiency was evaluated by measuring the setup time each time. Based on the obtained CBCT image, the adaptive plan was performed through Pinnacle, a computerized treatment planning system, to evaluate target, normal organ dose evaluation, and changes in bolus volume. Results: The setup time for each treatment plan was reduced by an average of 28 sec in the 3D Bolus treatment plan compared to the CB treatment plan. The Bolus Volume change during the pretreatment period was 86.1±2.70㎤ in 83.9㎤ of CB Initial Plan and 99.8±0.46㎤ in 92.2㎤ of 3D Bolus Initial Plan. The change in CTV Min Value was 167.4±19.38cGy in CB Initial Plan 191.6cGy and 149.5±18.27cGy in 3D Bolus Initial Plan 167.3cGy. The change in CTV Mean Value was 228.3±0.38cGy in CB Initial Plan 227.1cGy and 227.7±0.30cGy in 3D Bolus Initial Plan 225.9cGy. The change in PTV Min Value was 74.9±19.47cGy in CB Initial Plan 128.5cGy and 83.2±12.92cGy in 3D Bolus Initial Plan 139.9cGy. The change in PTV Mean Value was 226.2±0.83cGy in CB Initial Plan 225.4cGy and 225.8±0.33cGy in 3D Bolus Initial Plan 224.1cGy. The maximum value for the normal organ spinal cord was the same as 135.6cGy on average each time. Conclusion: From the experimental results of this paper, it was found that the application of 3D Bolus to the irregular body surface is more dosimetrically useful than the application of Commercial Bolus, and the setup reproducibility and efficiency are excellent. If further case studies along with research on the diversity of 3D printing materials are conducted in the future, the application of 3D Bolus in the field of radiation therapy is expected to proceed more actively.