• Title/Summary/Keyword: polysulfone membrane

Search Result 221, Processing Time 0.028 seconds

Miscibility of Polysulfone/Poly(1-vinylpyrrolidone-co-styrene) Blends and Their Application to the Ultrafiltration Membrane

  • Kim, Joo-Heun;Yoo, Jung-Eun;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.209-214
    • /
    • 2002
  • Miscibility of polysulfone (PSf) with various hydrophilic copolymers was explored. Among these blends, PSf gives homogeneous mixtures with poly(1-vinylpyrrolidone-co-styrene) copolymers [P(VP-S)] when these copolymers contained VP from 68 to 88 wt%. Microporous membranes for the ultrafiltration process were prepared from PSf blends with P(VP-S) copolymers. The membranes prepared from the PSf/(VP-S) blends exhibited higher water flux than the membranes prepared from PSf irrespective of the VP content. The solute rejection examined with the membranes fabricated from the miscible blends was similar to that of PSf membrane. However, the solute rejection examined with the membranes fabricated from the immiscible blends was lower than that of PSf membranes.

Preparation and Their Characterization of Blended Polymer Electrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone) (Polysulfone/SPEEK 블랜드 고분자 전해질 막 제조 및 특성 연구)

  • Cheon, Hun-Sang;Oh, Min;Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • Poly(ether ether ketone)(PEEK) was sulfonated using sulfuric acid and blended with polysulfone with various ratios. The blended polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity and ion exchange capacity. As the amount of sulfonated PEEK increased, both methanol permeability and proton conductivity increased. This was due to the increase of ion exchange capacity. The experimental results indicated that the blend membrane with 20% polysulfone was the best choice In terms of the ratio of proton conductivity to methanol permeability.

Gas Permeation Properties of Brominated Polysulfone Membranes (브롬화된 Polysulfone막에 의한 기체 투과 특성에 관한 연구)

  • Rhim, Ji-Won;Lee, Bo-Sung;Kim, Tae-Young;Kim, Dae-Hoon;Lee, Byung-Sung;Yoon, Seok-Won;Im, Hyeon-Soo
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.150-156
    • /
    • 2009
  • To improve the permselective efficiency of polysulfone membranes, the bromination was performed and then the resulting membranes were investigated in terms of membrane structures and gas transport characteristics. The brominated Polysulfone membranes were characterized by FT-IR, 1H-NMR, TGA, contact angle measurements, and gas permeation measurements were accomplished with He, $N_2,\;CO_2\;and\;O_2$. In general, the permeation rates were reduced while the selectivities increased as the bromination progressed.

Effect of Toluene Added to Casting Solution on Characteristic of Phase Inversion Polysulfone Membrane (상전환 공정에 의한 폴리설폰막의 제조에 있어 제막용액에 첨가된 톨루엔의 영향)

  • Choi, Seung-Rag;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.633-639
    • /
    • 2008
  • Polysulfone membranes were prepared via the phase inversion process. Toluene was added as a nonsolvent additive in the casting solution containing a mixture of polysulfone and n-methylpyrrolidone. When prepared via the diffusion-induced process using isopropanol as a precipitation nonsolvent, the solidified membranes revealed a similar asymmetric structure irrespective of the addition of toluene, presenting both a dense skin layer and a sponge-like support layer. The added toluene played a role of enhancing liquid-liquid phase separation of the casting solution, and skin layer thickness of a prepared membrane increased with toluene content in the casting solution. On membrane performance, the solute rejection showed a uniform behavior irrespective of the addition of toluene. However, in spite of the significant increase in dense skin layer thickness, the water permeation through the membrane prepared with 60 wt% toluene revealed five times as much flux, compared with that of the membrane prepared without toluene additive.

Ultrafiltration Characteristics of Poly(vinyl Alcohol) Solution and Theoretical Investigations (Poly(vinyl Alcohol) 용액의 한외여과 특성과 이론적 고찰)

  • 이상화;이영철
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.203-212
    • /
    • 1996
  • The operating parameters influencing on limiting flux was investigated in the ultrafiltration of PVA, and a new model, which is based on the Amiar model using the concept of heat transfer coefficient, was devised to overcome the limitation of gel-layer model. Using polysulfone plate-unit membrane (MWCO=20,000) and hollow-fiber membrane (MWCO= 30,000), ultrafiltration characteristics of PVA was examined with the variation of operating parameters such as cross flow velocity, transmembrane pressure, temperature, and PVA concentration. According to experimental results, the ultrafiltration of PVA through polysulfone membrane is mainly controlled by well-known phenomena of concentration polarization caused by gel-layer formation. On the contrary, in hollow fiber membrane was observed upward limiting flux which can not be explained by gel-layer model. New model was applied to predict the upward limiting flux behavior with partial satisfaction. The application of new model including viscosity correction factor, however, revealed that PVA ultrafiltration is closely related to the viscosity of permeating fluid.

  • PDF

Durability of Cation Exchange Membrane Containing Psf (polysulfone) in the All-vanadium Redox Flow Battery (Psf (polysulfone) 함유 양이온교환막의 바나듐 레독스-흐름 전지에서의 내구성)

  • Kim, Joeng-Geun;Kim, Jae-Chul;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • The cation exchange membrane using TPA (tungstophosphoric acid) and the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane resistance of the prepared cation exchange membrane in 1mol/L $H_2SO_4$ aqueous solution was measured. The membrane resistance of the prepared Psf-PPSS and Psf-TPA-PPSS cation exchange membrane was about $0.94{\Omega}{\cdot}cm^2$. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. The measured charge-discharge cell resistance of V-RFB at 4 A decreased in the order; Nafion117 < Psf-TPA-PPSS < Psf-PPSS. The durability of membrane was earried out by soaking it in $VO_2{^+}$ solution and evaluated by measuring the charge-discharge cell resistance of V-RFB with an increase of soaking time. The prepared Psf-PPSS cation exchange membrane had high durability and Psf-TPA-PPSS cation exchange membrane had almost same durability compared with Nafion117.

Preparation and Characterization of Microfiltration Membranes for Water Treatment (수처리용 정밀여과 멤브레인의 제조 및 특성 연구)

  • Jung, Boram;Kim, Nowon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.50-62
    • /
    • 2014
  • An asymmetric microfiltration membranes were prepared with polysulfone by an immersion precipitation phase inversion method. Microfiltration membranes were prepared by polysulfone/N-methyl-2-pyrrolidone/polyvinylpyrrolidone/phosphoric acid casting solution and water coagulant. The vapor induced phase inversion method was used to prepare the membranes. The pore size and the morphology were changed by the phosphoric acid additive, the temperature of casting plate and the exposure time at the relative humidity of 74%. The morphology of membranes was investigated by scanning electron microscopy and microflow permporometer. By the addition of the phosphoric acid additive in the casting solution, the morphology of the prepared membranes were changed from a dense sponge structure to a loose asymmetric sponge structure. Due to the addition of catalytic amount of phosphoric acid to NMP casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 3,000 LMH. The temperature of casting plate and exposure time had a apparent effect on the skin layer structure and the pore size and the porosity of the membrane.

Preparation of Polysulfone Composite Ultrafiltration Hollow Fiber Membranes Incorporating Nano-size Fumed Silica with Enhanced Antifouling Properties (나노 크기의 Fumed Silica가 함유된 Polysulfone 한외여과 중공사막 제조 및 내오염성 분석)

  • Kang, Yesol;Lim, Joohwan;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.379-387
    • /
    • 2018
  • This study was conducted to improve the membrane characteristics and performance by increasing hydrophilicity by adding additives to the ultrafiltration polysulfone (PSf) hollow fiber membrane. The mixed matrix membranes (MMMs) were prepared by dispersing 15 nm of fumed silica (FS) in the spinning solution at 0.1, 0.3 and 0.5 wt%. SEM analysis was carried out to confirm the cross-section and surface condition. It was confirmed that mean pore radius of the hollow fiber increased by 4 nm as FS was added. In addition, contact angle measurement was carried out for the hydrophilicity analysis of hollow fiber membranes, and it was confirmed that the hydrophilicity of MMMs were increased by adding of FS. In the case of water permeability, the membrane including FS showed 91~96 LMH and showed 5~11% more increase than PSf membrane. In the antifouling performance test, relative flux reduction ratios of FS mixed hollow fiber membranes were lower than that of PSf membranes, and it was confirmed that increase of hydrophilicity hinders adsorption of hydrophobic BSA on the membrane surface.

Preparation and Characterization of Polysulfone Substrate for Reinforced Composite Membrane Fuel Cell Membrane (연료전지 전해질 복합막 제조를 위한 폴리설폰계 지지체의 제조와 물성)

  • Nam, Sang-Yong;Kim, Deuk-Ju;Hwang, Rae-Young;Kim, Hyoung-Juhn
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, polysulfone which has excellent mechanical and thermal stability with low cost was used for preparing a non-conducting polymer matrix as a reinforced composite membrane for fuel cell application. The membranes were prepared by phase separation method. Polymer concentration and retention time were controlled to investigate the effects on the membrane morphology. The resaltant membranes showed all sponge-like structure independent of polymer concentration. The mechanical and thermal stability were improved with increasing polymer concentration in contrast to the membrane porosity. As a result, the membranes prepared with the retention time for 2 mins using 20 wt% of polymer solution was suitable for a fuel cell compositite membrane providing optimum properties such as approximately 80% of high porosity, 1.3 MPa of tensile strength, and less than 1% of thermal shrinkage both machine and transverse direction.