• Title/Summary/Keyword: polysaccharide from polygonatum

Search Result 3, Processing Time 0.016 seconds

Polysaccharide from Polygonatum Inhibits the Proliferation of Prostate Cancer-Associated Fibroblasts Cells

  • Han, Shu-Yu;Hu, Ming-Hua;Qi, Guan-Yun;Ma, Chao-Xiong;Wang, Yuan-Yuan;Ma, Fang-Li;Tao, Ning;Qin, Zhi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3829-3833
    • /
    • 2016
  • Inhibition of cancer-associated fibroblasts (CAFs) may improve the efficacy of cancer therapy. Polysaccharide extracted from polygonatum can selectively inhibit the growth of prostate-CAFs (p<0.001) without inhibiting the growth of normal fibroblasts (NAFs). Polysaccharides from polygonatum stimulate autophagy of prostate-CAFs. 3-methyl-adenine(3-MA) is an autophagy inhibitor. 3-MA was added to prostate-CAFs with polysaccharide from polygonatum to determine whether autophagy plays an important role in the restrained effect. Finally, polysaccharide from polygonatum treatment significantly increased the activation of Beclin-1 and LC3, key autophagy proteins. Polysaccharide from polygonatum stimulates autophagy of prostate-CAFs and inhibits prostate-CAF growth, indicating that a novel anti-cancer strategy involves inhibiting the growth of prostate-CAFs.

Isolation and Characterization of Intestinal Immune System Modulating and Anticancer Active Fractions from the Herbal Prescriptions

  • Hwang, Jong-Hyun;Jeong, Jae-Hyun;Yu, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.323-329
    • /
    • 2009
  • The prescriptions (DB-1-DB-5) were prepared with the active herbal medicines, Acanthopanax senticosus, Glycyrrhiza uralensis, Polygonatum odoratum, and Cichorium intybus. The most active crude polysaccharide fraction (DB-2-3), which was isolated through the fractionation of hot-water extract from DB-2, was significantly reduced by periodate oxidation (52.7 and 63.7%) on intestinal immune system modulating and anticancer activity. When DB-2-3 was further fractionated by column chromatographies, DB-2-3IIc-2 showed the most potent activities. In addition, DB-2-3IIc stimulated the proliferation of bone marrow cells via Peyer's patch in dose-dependent pattern by oral administration. The metastasis of colon 26-M3.1 lung carcinoma had significantly inhibited in mice fed DB-2-3IIc at 1 mg/mouse (43.8%). DB-2-3IIc-2 mainly contained uronic acid (46.1%) and 42.5% of neutral sugar with a small amount of protein (7.6%), and component sugar analysis also showed that DB-2-3IIc-2 was composed Ara, Gal, and GalA (molar ratio; 0.50:0.63:1.00). It may be suggested that activities of DB-2-3IIc-2 are resulted from pectic polysaccharides containing a polygalacturonan moiety with side chain of neutral sugars, such as Ara and Gal.

Isolation of Polysaccharides Modulating Mouse’s Intestinal Immune System from Peels of Citrus unshiu (귤피로부터 분리한 마우스의 장관면역 활성 다당류의 검색)

  • Yang, Hyun-Seuk;Yu, Kwang-Won;Choi, Yang-Mun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1476-1485
    • /
    • 2004
  • Of solvent-extracts prepared from the 90 kinds of Korean traditional tea and rice gruel plants, cold-water extract from peels of Citrus unshiu (CUI-0) showed the most potent intestinal immune system modulating activity through Peyer’s patch whereas other extracts did not have the activity except for cold-water extracts of Laminaria japonica, Polygonatum japonicum, Poncirus trifoliata, and hot-water extracts of Gardenia jasminoides, Lycium chinense having intermediate activity. CUI-0 was further fractionated into MeOH-soluble fraction (CUI-1), MeOH insoluble and EtOH-soluble fraction (CUI-2), and crude polysaccharide fraction (CUI-3). Among these fractions, CUI-3 showed the most potent stimulating activity for the proliferation of bone marrow cells mediated by Peyer’s patch cells, and contained arabinose, galacturonic acid, galactose, glucose, glucuronic acid and rhamnose (molar ratio; 1.00:0.53:0.45:0.28:0.28:0.19) as the major sugars, and a small quantity of protein (9.4%). In treatments of CUI-3 with pronase and periodate (NaIO₄), the intestinal immune system modulating activity of CUI-3 was significantly reduced, and the activity of CUI-3 was affected by periodate oxidation particularly. The potently active carbohydrate-rich fraction, CUI-3IIb-3-2 was further purified by anion-exchange chromatography on DEAE-Sepharose FF, Sepharose CL-6B and Sephacryl S-200. CUI-3IIb-3-2 was eluted as a single peak on HPLC and its molecular weight was estimated to be 18,000 Da. CUI-3IIb-3-2 was consisted mainly of arabinose, galactose, rhamnose, galacturonic acid and glucuronic acid (molar ratio;1.00:0.54:0.28:1.45:0.63) in addition to a small amount of proteins (3.2%). In addition, CUI-3IIb-3-2 showed the activity only through Peyer’s patch cells, but this fraction did not directly stimulate proliferation of bone marrow cells. It may be concluded that intestinal immune system modulating activity of peels from C. unshiu is caused by pectic polysaccharides having a polygalacturonan moiety with neutral sugars such as arabinose and galactose.