• Title/Summary/Keyword: polypropylene composite

Search Result 276, Processing Time 0.026 seconds

A Constitutive Equation Including Strain Rate Effect for the Expanded Polypropylene (변형률 속도가 고려된 발포 폴리프로필렌의 구성방정식)

  • Kim, Han-Kook;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.130-134
    • /
    • 2014
  • The purpose of this paper is to build DB in order to Propose new constitutive equations by redefining constitutive equations for Polyurethane presented by Jeong et al. [12] based on Quasi-static test and Impact test DB of Expanded polypropylene using cylindrical specimens with 4 different densities presentsd by Kim et al. [7] for EPP foam and combining the impulse-momentum theory.

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

Preparation and Physical Properties of Polypropylene/Cellulose Composites (폴리프로필렌/셀룰로오스 복합재의 제조 및 물성)

  • Jang, Song Yi;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.130-135
    • /
    • 2015
  • Cellulose has attracted much attention as potential reinforcements in green composites. In this study, polypropylene (PP)/cellulose composites were prepared by melt-blending followed by compression molding. To improve interfacial bonding between PP and cellulose, maleic anhydride-grafted polypropylene (MAPP) was used. Mechanical properties of the PP/cellulose composites were investigated by UTM and izod impact tester. Thermal properties of the PP/cellulose composites were investigated by TGA and DSC. SEM images for the fracture surfaces of the composites showed that the MAPP was effective in improving PP/cellulose interfacial bonding. Tensile strength and modulus of the composite were maxima when MAPP content, based on cellulose content, was 3 wt%. With increasing cellulose content, the impact strength of the composites decreased but the tensile strength and modulus increased.

Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment (탄소섬유 표면처리에 따른 탄소섬유/폴리프로필렌 복합재료의 기계적 물성 평가)

  • Han, Song Hee;Oh, Hyun Ju;Kim, Seong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.791-796
    • /
    • 2013
  • In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XPS, SEM, and single-filament tensile test. The interlaminar shear strength (ILSS) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the ILSS of the plasma-treated specimen increased with the treatment time. The ILSS of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen.

Fluoro-illite/polypropylene Composite Fiber Formation and Their Thermal and Mechanical Properties (불소화 일라이트/폴리프로필렌 복합섬유 형성 및 열 및 기계적 특성)

  • Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • This study investigated illite/polypropylene (PP) composite filament formation via melt-spinning and evaluated their physical properties to prepare functional fibers using natural materials. When composite filaments were formed, the composite filaments exhibited smaller fiber diameters compared to that of neat PP filament because of the lubricant effect of illite induced by its layered structure. Moreover, fluorination effect increased interfacial affinity and dispersion in the polymer, resulting in smaller diameter of fluorinated illite/PP composite filament, which was 2/3 of the neat PP filament diameter. Addition of raw and fluorinated illite improved thermal stability of illite/PP composite filament. Raw illite/PP composite filament cannot be used for a practical application, because it broke during drawing process, whereas the fluorinated illite/PP composite filament can be used for a practical application, because it exhibited similar tensile strength of the neat PP filament and 50% increased modulus. Even with improved illite/PP interfacial affinity and illite dispersion in the polymer, illite/PP composite filament formed microcomposite, because non-expandable illite had strongly bound layers, resulting in only a little illite exfoliation and PP intercalation into illite.

Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids

  • Prabhu, T. Niranjana;Demappa, T.;Harish, V.;Prashantha, K.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.97-111
    • /
    • 2015
  • Polypropylene short fiber (PP)-clay particulate-epoxy ternary composites were prepared by reinforcing PP short fiber and clay particles in the range of 0.1 phr to 0.7 phr into epoxy resin. Prepared hybrid composites were characterized for their mechanical, thermal and flame retardant properties. The obtained results indicated an increase in impact resistance, tensile strength, flexural strength and Young's modulus to an extent (up to 0.5 phr clay and 0.5 phr PP short fiber) and then decreases as the reinforcing phases are further increased. The thermal stability of these materials are found to increase up to 0.2 phr clay and 0.2 phr PP addition, beyond which it is decreased. Addition of clay is found to have the negative effect on epoxy-PP short fiber composites, which is evident from the comparison of mechanical and thermal properties of epoxy-0.5 phr PP short fiber composite and epoxy-0.5 phr PP short fiber-0.5 phr clay composite hybrid. UL-94 tests conducted on the composite hybrids have showed a reduction in the burning rate. Morphological observations indicated a greater fiber pull with the addition of clay. The performed tests in the present study indicated that materials under investigation have promising applications in construction, agriculture and decorative purposes.

Effect of temperature and blank holder force on non-isothermal stamp forming of a self-reinforced composite

  • Kalyanasundaram, Shankar;Venkatesan, Sudharshan
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • Composite materials are rapidly gaining popularity as an alternative to metals for structural and load bearing applications in the aerospace, automotive, alternate energy and consumer industries. With the advent of thermoplastic composites and advances in recycling technologies, fully recyclable composites are gaining ground over traditional thermoset composites. Stamp forming as an alternative processing technique for sheet products has proven to be effective in allowing the fast manufacturing rates required for mass production of components. This study investigates the feasibility of using the stamp forming technique for the processing of thermoplastic, recyclable composite materials. The material system used in this study is a self-reinforced polypropylene composite material (Curv$^{(R)}$). The investigation includes a detailed experimental study based on strain measurements using a non-contact optical measurement system in conjunction with stamping equipment to record and measure the formability of the thermoplastic composites in real time. A Design of Experiments (DOE) methodology was adopted to elucidate the effect of process parameters that included blank holder force, pre heat temperature and feed rate on stamp forming. DOE analyses indicate that feed rate had negligible influence on the strain evolution during stamp forming and blank holder force and preheat temperature had significant effect on strain evolution during forming.

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

Investigation of Mechanical Property of Polypropylene and CF/PP Composites with Number of Recycle (재활용 횟수에 따른 폴리프로필렌 및 탄소섬유 강화 PP 복합재료의 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Lea, Tea-Ung;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.303-308
    • /
    • 2013
  • Carbon fiber (CF) reinforced polypropylene (PP) compositeis was increased to amount consumed. In this study, recycle of composites by recycle times. CF was containing 20%. Mechanical and interfacial propertis of CF/PP was evaluation for number of recycle time. Mechanical assessment of CF/PP was tension, bending, fatigue tension test and izod test method. Interfacial assessment of CF/PP was wettability test and FE-SEM of fracture surface method. Fiber and matrix was changed to recycle time. The more recycle of CF/PP, the more interfacial bonding was decreased. Because fiber and matrix was damaged to thermal damage. And then reinforced CF was shorter than original shape.