• Title/Summary/Keyword: polypropylene composite

Search Result 277, Processing Time 0.023 seconds

Carbon Fiber Tow Spreading Technology and Mechanical Properties of Laminate Composites (탄소섬유 펼침 기술 및 이를 적용한 적층 복합재료의 기계적 특성)

  • Park, Sung Min;Kim, Myung Soon;Choi, Yoon Sung;Lee, Eun Soo;Yoo, Ho Wook;Chon, Jin Sung
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.249-253
    • /
    • 2015
  • This paper reports a study on a method for achieving lightweight thermoplastic laminate composites referred to as tow spreading technology. Thickness of an unspread 12 K carbon fiber tow is reduced by increasing the tow width from 7 mm to 20 mm. The polypropylene (PP) film was used to stabilize and impregnate the spread tow, covering it into a partially consolidated prepreg: 12 K carbon fiber spread tow/PP. Laminates were fabricated from the spread tow prepreg and control laminate composites were produced from unspread tow prepreg consisting of 12 K carbon fiber and PP. The void content, tensile and flexural properties of the composite laminates were investigated. Consequently, the spread tow laminate composite exhibited lower void content and improved mechanical properties.

Effects of Recycled PP Content on the Physical Properties of Wood/PP Composites (재활용 폴리프로필렌의 함량이 목분/폴리프로필렌 복합체의 물성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • In this study, the melt-mixing condition was optimized first to maximize the physical properties of a wood plastic composite (WPC) with recycled polypropylene (PP) and the effects of recycled PP content on the physical properties of the WPC were investigated. Mechanical properties of the WPC were measured by UTM and an izod impact tester and thermal properties were investigated by DSC, TGA and DMA. Fracture surfaces of the WPC were investigated by SEM. The optimized mixing condition of WPC with 50 wt% recycled PP of total PP was melt-mixing at $170^{\circ}C$ for 15 min at 60 rpm. With increasing the content of the recycled PP, the water absorption characteristics of the WPC increased and the thermal and mechanical properties decreased. However, the following was concluded from the analysis of all the physical properties; it was possible adding the recycled PP up to 50 wt% of total PP without a significant decrease in the performance of the WPC.

Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites (왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향)

  • Choi J.Y.;Wang Renliang;Yoon H.C.;Lim J.K.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

The Effect of Butt Gap in Insulation Properties for a HTS Cable

  • D.S.Kwag;Kim, Y.S.;Kim, H.J.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.43-47
    • /
    • 2003
  • For an electrical insulation design of HTS cable, it is important to understand the dielectric characteristics of insulation materials in $LN_2$ and the insulation type. Generally, the electrical insulation of HTS Cable is classified into two types of the composite insulation and solid insulation type. In this research, we selected the insulation paper/$LN_2$ composite insulation type for the electric insulation of a HTS cable, and studied electric insulation characteristics of synthetic Laminated Polypropylene Paper (LPP) in liquid nitrogen ($LN_2$) for the application to high temperature superconducting (HTS) cable. Furthermore, we compared the breakdown characteristics of the butt gap and bended mini-model cable. It is necessary to understand the winding parameter of insulation paper/$LN_2$ composite insulation.

A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Biaxial Stretch Forming (유리섬유 강화 열가소성 복합재료의 2축 인장성형시 재료거동에 관한 연구)

  • 이중희;류성기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.169-175
    • /
    • 2000
  • The object of this study was to investigate the feasibility of solid-phase forming of the composites and to characterize the material behavior in the biaxial stretch forming. The materials tested contained 20%, 30%, and 40% glass fibers by weight in a polypropylene matrix. Biaxial stretch forming tests were performed at three forming speeds of 10mm/sec, 1mm/sec, and 0.1mm/sec and at four forming temperatures of $75^{\circ}C, 100^{\circ}C, 125^{\circ}C, and 150^{\circ}C$ to investigate effects of forming speed and forming temperature. The microscopic observation of a formed part was conducted at various strain levels to characterize the material behavior. The strain distribution on a formed part was measured and displayed on the farmed geometry with a contour display The material behavior of the composite in the biaxial stretch forming was strongly influenced by the forming conditions.

  • PDF

Study of the Plasma Coating Effect on Wood Powder Composites (플라즈마 표면 코팅된 목분 복합재료의 영향 연구)

  • Ha, Jong-Hak;Kim, Byung-Sun;Hwang, Byung-Sun;Kang, Byong-Yun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.99-102
    • /
    • 2005
  • Plasma surface coating is applied to the wood powder to improve its bonding and dispersion with the polypropylene(PP). Some mechanical test results and visual inspection indicates the good compatibility between the wood powder and the PP, and relatively good interfacial adhesion between wood powder and PP matrix was seen. Also, this method is considered as a non-toxic process as compared to other direct chemical method.

  • PDF

A Study on the bending process of glass fiber reinforced thermoplastic composite (유리섬유 강화 열가소성 복합재료의 굽힘성에 대한 연구)

  • 남궁천;김동석;이중희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.513-517
    • /
    • 1997
  • Glass fiber reinforced thermoplastic composite materials have considerable promise for increased use in low cost high volum applications because of the potential for processing by solid phase forming. However, the forming characteristics of these materials have not been well known. The primary focus of this research is the investigation of the bendability of these composites and spring-back phenomena in pure bending. The materials tested contained 10, 35, and 40 percent by weight of randomly oriented glass fiber in a polypropylene matrix. The bending tests were performed at temperatures ranging form 75 ".deg. c" to 150 ".deg. c" and at punch speeds of 2.54 mm/sec and 0.0254 mm/sec. The measured bendability and spring back angle in pure bending werw compared with the predictions based on the simple analyical models. Goog agreement between experimental and analytical results was observed.esults was observed.

  • PDF

Flexural behaviour of fibre reinforced geopolymer concrete composite beams

  • Vijai, K.;Kumutha, R.;Vishnuram, B.G.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.437-459
    • /
    • 2015
  • An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional steel bars and various types of fibres namely steel, polypropylene and glass in different volume fractions under flexural loading is presented in this paper. The cross sectional dimensions and the span of the beams were same for all the beams. The first crack load, ultimate load and the loaddeflection response at various stages of loading were evaluated experimentally. The details of the finite element analysis using "ANSYS 10.0" program to predict the load-deflection behavior of geopolymer composite reinforced concrete beams on significant stages of loading are also presented. Nonlinear finite element analysis has been performed and a comparison between the results obtained from finite element analysis (FEA) and experiments were made. Analytical results obtained using ANSYS were also compared with the calculations based on theory and presented.

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry (열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Chun, Sang-Jin;Choi, Don-Ha;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

Filtration Characteristics of Polymeric Porous Materials Composed of Polypropylene and Polyethylene (Polypropylene과 Polyethylene으로 구성된 기공성 고분자 소재의 여과특성)

  • Ahn, Byeng-Gil;Oh, Kyeong-Keun;Choi, Ung-Soo;Kwon, Oh-Kwan
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.32-40
    • /
    • 1998
  • The polymeric porous materials which consist of polypropylene(PP) and polyethylene(PE) powder were prepared to apply to the air purification systems by extrusion sintering method. SEM analysis showed that a composite polymeric porous structure made up of PP and PE was obtained, where PE was melted and adhered to PP because the melting temperature of PE was lower than that of PP. The filtration characteristics and mechanical properties of polymeric porous materials were investigated by varying the head die temperature of the extruder, extrusion velocity, and the melt index and quantity of PE. The filtration efficiency was proportional to the quantity of PE but inversely proportional to the melt index of PE. The polymeric porous materials composed of PP and PE, which was made by extrusion sintering method, was found to be suitable for the filter element of the air purification system.

  • PDF